分析 (1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(4x+$\frac{π}{3}$),有三角函数的周期性及其求法可求周期;
(2)利用正弦函数的图象和性质求出单调区间;
(3)根据三角形函数的取值范围,求出最值,以及自变量的取值集合.
解答 解:(1)f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)=sin$\frac{π}{3}$cos4x+cos$\frac{π}{3}$sin4x+cos4xcos$\frac{π}{6}$+sin4xsin$\frac{π}{6}$
=$\frac{\sqrt{3}}{2}$cos4x+$\frac{1}{2}$sin4x+$\frac{\sqrt{3}}{2}$cos4x+$\frac{1}{2}$sin4x=$\sqrt{3}$cos4x+sin4x=2sin(4x+$\frac{π}{3}$),
∴T=$\frac{2π}{4}$=$\frac{π}{2}$.
∴f(x)的最小正周期为$\frac{π}{2}$;
(2)递减区间满足:$\frac{π}{2}$+2kπ≤4x+$\frac{π}{3}$≤$\frac{3π}{2}$+2kπ,k∈Z,
∴递减区间为[$\frac{π}{24}$+$\frac{kπ}{2}$,$\frac{7π}{24}$+$\frac{kπ}{2}$],k∈Z.
递增区间满足:-$\frac{π}{2}$+2kπ≤4x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴递增区间为[-$\frac{5π}{24}$+$\frac{kπ}{2}$,$\frac{π}{24}$+$\frac{kπ}{2}$].k∈Z.
∴f(x)在[-$\frac{5π}{24}$+$\frac{kπ}{2}$,$\frac{π}{24}$+$\frac{kπ}{2}$].k∈Z为增函数,在[$\frac{π}{24}$+$\frac{kπ}{2}$,$\frac{7π}{24}$+$\frac{kπ}{2}$],k∈Z为减函数;
(3)当{x|4x+$\frac{π}{3}$=$\frac{π}{2}$+2kπ},即{x|x=$\frac{π}{24}$+$\frac{kπ}{2}$,k∈Z}时,函数f(x)有最大值,最大值为2,
当{x|4x+$\frac{π}{3}$=$\frac{3π}{2}$+2kπ},即{x|x=$\frac{7π}{24}$+$\frac{kπ}{2}$,k∈Z}时,函数f(x)有最小值,最小值为-2.
点评 本题考查三角函数的最小正周期、递减区间和递增区间的求法,注意正弦加法定理、余弦加法定理、正弦函数性质的合理运用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{7\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | $\frac{7\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[\frac{1}{4},1)$ | B. | $(0,\frac{1}{4}]$ | C. | $[\frac{3}{4},1)$ | D. | $(0,\frac{3}{4}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1.9升 | B. | 2.1升 | C. | 2.2升 | D. | 2.3升 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com