精英家教网 > 高中数学 > 题目详情
在120°的二面角内,放一个半径为10cm的球切两半平面于A,B两点,那么这两切点在球面上的最短距离是   
【答案】分析:由题意及二面角的面与球相切的性质可以求得∠AOB=60°,又半径已知,由弧长公式求出两切点在球面上的最短距离
解答:解:由球的性质知,OA,OB分别垂直于二面角的两个面,
又120°的二面角内,故∠AOB=60°
∵半径为10cm的球切两半平面于A,B两点
∴两切点在球面上的最短距离是10×=
故答案为:
点评:本题考查球面距离及相关计算,解题的关键是根据二面角与球的位置关系得出过两切点的两个半径的夹角以及球面上两点距离的公式,本题考查了空间想像能力,能根据题设条件想像出两个几何体的位置关系且判断出夹角是解题成功的保证
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖北省黄石市高二(下)期中数学试卷(理科)(解析版) 题型:填空题

在120°的二面角α-l-β内有一点P,P在平面α、β内的射影A、B分别落在半平面αβ内,且PA=3,PB=4,则P到l的距离为   

查看答案和解析>>

科目:高中数学 来源:2012年江苏省高考数学全真模拟试卷(10)(解析版) 题型:解答题

在120°的二面角内放置一个小球,它与二面角的两个面相切于M、N两点,这两个点的距离AB=5,则小球的半径为   

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学仿真押题试卷(09)(解析版) 题型:解答题

在120°的二面角内放置一个小球,它与二面角的两个面相切于M、N两点,这两个点的距离AB=5,则小球的半径为   

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广西南宁二中高三(下)5月月考数学试卷(文科)(解析版) 题型:解答题

在120°的二面角内放置一个半径为5的小球,它与二面角的两个面相切于A、B两点,则这两个点在球面上的距离为   

查看答案和解析>>

同步练习册答案