【题目】已知随机变量X﹣N(1,1),其正态分布密度曲线如图所示,若向正方形OABC中随机投掷10000个点,则落入阴影部分的点个数的估计值为( ) 附:若随机变量ξ﹣N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544.
A.6038
B.6587
C.7028
D.7539
科目:高中数学 来源: 题型:
【题目】已知正四棱柱ABCD﹣A1B1C1D1 , AB=a,AA1=2a,E,F分别是棱AD,CD的中点.
(1)求异面直线BC1与EF所成角的大小;
(2)求四面体CA1EF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]已知函数f(x)=|x﹣a|+|2x﹣1|(a∈R).
(Ⅰ)当a=1时,求f(x)≤2的解集;
(Ⅱ)若f(x)≤|2x+1|的解集包含集合[ ,1],求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠BAD=60°,平面BDEF⊥平面ABCD,四边形BDEF是正方形,点M在线段EF上, =λ .
(1)当λ= ,求证:BM∥平面ACE;
(2)如二面角A﹣BM﹣C的平面角的余弦值为﹣ ,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1+2a2+…+nan=4﹣ .
(1)求数列{an}的通项公式;
(2)若bn=(3n﹣2)an , 求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sin(x+ )cos(x+ )的图象沿x轴向右平移 个单位后,得到一个偶函数的图象,则φ的取值不可能是( )
A.
B.﹣
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,函数f(x)的图象记为曲线C.
(1)若函数f(x)在[0,+∞)上单调递增,求c的取值范围;
(2)若函数y=f(x)﹣m有两个零点α,β(α≠β),且x=α为f(x)的极值点,求2α+β的值;
(3)设曲线C在动点A(x0 , f(x0))处的切线l1与C交于另一点B,在点B处的切线为l2 , 两切线的斜率分别为k1 , k2 , 是否存在实数c,使得 为定值?若存在,求出c的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣DEF中,侧面ABED是边长为2的菱形,且∠ABE= ,BC= ,四棱锥F﹣ABED的体积为2,点F在平面ABED内的正投影为G,且G在AE上,点M是在线段CF上,且CM= CF.
(Ⅰ)证明:直线GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com