精英家教网 > 高中数学 > 题目详情
17.设条件p:2x2-3x+1>0,条件q:$\frac{1}{x}$<1,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

分析 分别解出关于p,q的不等式,结合充分必要条件的定义判断即可.

解答 解:条件p:2x2-3x+1>0?x>1或x<$\frac{1}{2}$,
条件q:$\frac{1}{x}$<1?x>1或x<0
∴q是p的必要不充分条件,
∴¬p是¬q的必要不充分条件,
故选:B.

点评 本题考察了充分必要条件,考察集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知f(x)=4x-3•2x+3的值域为[7,43],求x范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{a}$=(2,-1,1),$\overrightarrow{b}$=(-1,1,-2),$\overrightarrow{c}$=(3,2,λ),若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$三向量共面,则实数λ等于(  )
A.-9B.-7C.1D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\left\{\begin{array}{l}{|sinx|,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,函数g(x)=$\left\{\begin{array}{l}{lg(-x),x<0}\\{{x}^{2},x≥0}\end{array}\right.$,则f(x)=g(x)根的个数是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x),对任意的实数x满足f(x-2)=f(x+2),且当x∈[-1,3)时,f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x≤1)}\\{-|x-2|(1<x<3)}\end{array}\right.$,若直线y=kx与函数f(x)的图象有5个公共点,则实数k的取值范围是(-$\frac{\sqrt{15}}{15}$,-$\frac{1}{5}$)∪($\frac{1}{5}$,$\frac{\sqrt{15}}{15}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(α)=$\frac{sin(π-α)cos(\frac{5π}{2}-α)tan(-α+π)}{tan(-\frac{π}{2}-α)sin(-π-α)}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{7π}{2}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果实数x,y满足条件$\left\{\begin{array}{l}{2x-y≥0}\\{x+2y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=x+y的最小值为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲、乙、丙、丁四名同学在节日当天分别手工制作了一张卡片,送给除本人外的三人中的某一个人(每人只得一张卡片),可能的结果共有9种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点A(1,1),B(2,1),C(1,2),若-1≤λ≤2,2≤μ≤3,则$|{λ\overrightarrow{AB}+μ\overrightarrow{AC}}|$的取值范围是(  )
A.[1,10]B.$[{\sqrt{5},\sqrt{13}}]$C.[1,5]D.$[{2,\sqrt{13}}]$

查看答案和解析>>

同步练习册答案