【题目】某校学生会为了解该校学生对2017年全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类.已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数与女生人数之比为,对两会“不太关注”的学生中男生比女生少5人.
(1)根据题意建立列联表,并判断是否有的把握认为男生与女生对两会的关注有差异?
(2)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人进行回访,求这2人全是男生的概率.
参考公式和数据:,其中.
【答案】(1)没有的把握认为男生与女生对两会的关注有差异;(2).
【解析】
(1)“比较关注”的学生中男生人数与女生人数之比为,构造方程求得列联表数据,依据公式计算得到的观测值,可知无的把握;(2)通过分层抽样确定抽取的男女生人数,再列举出所有可能的结果,根据古典概型得到结果.
(1)由这名学生中男生比女生多人,可得男生人数为,女生人数为,
设男生中“不太关注”的人数为,则男生中“比较关注”的人数为,
由“不太关注”的学生中男生比女生少人,可得女生中“不太关注”的人数为,
则女生中“比较关注”的人数为,
由“比较关注”的学生中男生人数与女生人数之比为,可得,解得,
则列联表如下:
比较关注 | 不太关注 | 合计 | |
男生 | |||
女生 | |||
合计 |
则的观测值,
所以没有的把握认为男生与女生对两会的关注有差异.
(2)由题意得男生抽人、女生抽人,
记这名男生分别为,名女生分别为
则所有的可能情况为,,,,,,,,,,,,,,,,,,,,,共种,其中人全是男生的有,,,,,,共种,
故所求概率.
科目:高中数学 来源: 题型:
【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高二年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频数统计表如下:
表1:男生
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 5 |
表2:女生
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 |
(1)由表中统计数据填写下边列联表:
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | 总计 |
(2)试采用独立性检验进行分析,能否在犯错误的概率不超过0.1的前提下认为“测评结果优秀与性别有关”.
参考数据与公式:,其中.
临界值表:
0.1 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆:的左、右焦点分别为,轴,直线交轴于点,,为椭圆上的动点,的面积的最大值为1.
(1)求椭圆的方程;
(2)过点作两条直线与椭圆分别交于且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市对创“市级示范性学校”的甲、乙两所学校进行复查验收,对办学的社会满意度一项评价随机访问了20为市民,这20位市民对这两所学校的评分(评分越高表明市民的评价越好)的数据如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
检查组将成绩分成了四个等级:成绩在区间的为等,在区间的为等,在区间的为等,在区间为等.
(1)请用茎叶图表示上面的数据,并通过观察茎叶图,对两所学校办学的社会满意度进行比较,写出两个统计结论;
(2)估计哪所学校的市民的评分等级为级或级的概率大,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的两条互相垂直的直线与抛物线相交于不同于原点的两点,且轴,的面积为16.
(1)求抛物线的标准方程;
(2)已知点,,为抛物线上不同的三点,若,试问:直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下结论:
①命题“若,则”的逆否命题“若,则”;
②“”是“”的充分条件;
③命题“若,则方程有实根”的逆命题为真命题;
④命题“若,则且”的否命题是真命题.
其中错误的是__________.(填序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)现随机抽取1名顾客,试估计该顾客年龄在且未使用自由购的概率;
(Ⅱ)从被抽取的年龄在使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在的概率;
(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com