精英家教网 > 高中数学 > 题目详情

【题目】为不同的两点,直线,以下命题中正确的序号为__________.

(1)不论为何值,点N都不在直线上;

(2),则过MN的直线与直线平行;

3)若,则直线经过MN的中点;

4)若,则点MN在直线的同侧且直线与线段MN的延长线相交.

【答案】(1)(2)(3)(4)

【解析】

利用分母不等于零判断(1),利用斜率相等判断(2);利用中点坐标满足方程判断(3);根据,以及MN在直线的距离不同判断(4.

(1)因为,所以不在直线上,正确;

2时,由可得,化为,即直线的斜率为,所以过MN的直线与直线平行,时,过MN的直线与直线都与轴平行,综上可得(2)正确;

3时,化为,即直线经过MN的中点,正确;

4可得,可得MN在直线的同侧,进而得MN在直线的距离不同,直线与线段MN的延长线相交,正确.

即正确命题的序号为(1)(2)(3)(4)

故答案为(1)(2)(3)(4).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在边长为4的菱形中,于点,将沿折起到的位置,使,如图2.

(1)求证:平面

(2)求二面角的余弦值;

(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个不同的红球和个不同的白球,放入同一个袋中,现从中取出个球.

1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;

2)取出一个红球记分,取出一个白球记分,若取出个球的总分不少于分,则有多少种不同的取法;

3)若将取出的个球放入一箱子中,记“从箱子中任意取出个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到个红球并且恰有一次取到个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )

A. 依次成公比为2的等比数列,且

B. 依次成公比为2的等比数列,且

C. 依次成公比为的等比数列,且

D. 依次成公比为的等比数列,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上两点M(-5,0)和N(5,0),若直线上存在点P使|PM|-|PN|=6,则称该直线为单曲型直线,下列直线中是单曲型直线的是( )

y=2 .

A.①③ B. ③④ C.②③ D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如下表所示:

月份

1

2

3

4

5

6

销售单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14.2

(1)根据1至5月份的数据,求出y关于x的回归直线方程;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?

(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

参考公式:回归直线方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:圆心到直线的距离与圆的半径之比为直线关于圆的距离比.

(1)设圆求过2,0的直线关于圆的距离比的直线方程;

(2)若圆轴相切于点0,3)且直线= 关于圆的距离比,求此圆的的方程;

(3)是否存在点,使过的任意两条互相垂直的直线分别关于相应两圆的距离比始终相等?若存在,求出相应的点点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为促进职工业务技能提升,对该单位120名职工进行一次业务技能测试,测试项目共5项.现从中随机抽取了10名职工的测试结果,将它们编号后得到它们的统计结果如下表(表1)所示(“√”表示测试合格,“×”表示测试不合格).

表1:

编号\测试项目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

规定:每项测试合格得5分,不合格得0分.

(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.

①设抽取的这10名职工中,每名职工测试合格的项数为,根据上面的测试结果统计表,列出的分布列,并估计这120名职工的平均得分;

②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;

(2)已知在测试中,测试难度的计算公式为,其中为第项测试难度,为第项合格的人数,为参加测试的总人数.已知抽取的这10名职工每项测试合格人数及相应的实测难度如下表(表2):

表2:

测试项目

1

2

3

4

5

实测合格人数

8

8

7

7

2

定义统计量,其中为第项的实测难度,为第项的预测难度().规定:若,则称该次测试的难度预测合理,否则为不合理,测试前,预估了每个预测项目的难度,如下表(表3)所示:

表3:

测试项目

1

2

3

4

5

预测前预估难度

0.9

0.8

0.7

0.6

0.4

判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的夹角为,设.

1)当时,求的夹角大小;

2)是否存在实数,使得的夹角为钝角,若存在求出的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案