精英家教网 > 高中数学 > 题目详情
四棱锥S-ABCD中,底面ABCD为平行四边形,SO⊥底面ABCD,O在CB上.已知∠ABC=45°,AB=2,BC=2
2
,SA=SB=
3

(Ⅰ)求证:平面SCB⊥平面ABCD;
(Ⅱ)求四棱锥S-ABCD的体积;
(Ⅲ)求直线SD与平面SAB所成角的正弦值.
分析:(I)利用SO⊥底面ABCD,可证平面SCB⊥平面ABCD;
(II)利用余弦定理求得cos∠SBA,再利用三面角余弦公式求得cos∠SBA,从而求得OB,SO的长,然后利用棱锥的体积公式计算.
(III)先证明OA⊥OB,再以O点位原点建立空间直角坐标系,求得平面SAB的法向量,利用向量坐标运算求线面角的正弦.
解答:解:( I)∵SO?平面SBC,SO⊥底面ABCD,
∴平面SCB⊥平面ABCD.
(II)∵AB=2,SA=SB=
3
,∴cos∠SBA=
4+3-3
2×2×
3
=
3
3

由三面角余弦公式得:cos∠SBA=cos∠SBO•cos∠ABC,即
3
3
=cos∠SBO•cos450
cos∠SBO=
6
3

cos∠SBO=
OB
SB

OB=SBcos∠SBO=
3
×
6
3
=
2

又∵BC=2
2

∴O为BC的中点,SO=
SB2-OB2
=1

VS-ABCD=
1
3
S
ABCD
×SO=
1
3
×BC×AB×sin45°×SO=
1
3
×2
2
×2×
2
2
×1=
4
3

( III)如图,以O为原点,OA为x轴,OB为y轴,OS为z轴,建立空间直角坐标系O-xyz,
则A(
2
,0,0),B(0,
2
,0),C(0,-
2
,0),D(
2
,-2
2
,0),S(0,0,1)
SA
=(
2
,0,-1),
AB
=(-
2
2
,0)

n
=(x,y,z)为平面SAB的一个法向量,
n
SA
n
AB
可得:
n
SA
=0
n
AB
=0

2
x-z=0
-
2
x+
2
y=0
 
取x=l,得
n
=(1,1,
2

SD
=(
2
,-2
2
,-1),
设直线,SD与平面SAB所成的角为θ,
则sinθ=
|
SD
n
|
|
SD
|•|
n
|
=
22
11

故直线SD与平面SAB所成角的正弦值为
22
11
点评:本题考查了面面垂直的证明.考查了棱锥的体积计算,考查了利用向量坐标运算求线面角的正弦值,考查学生的空间想象能力,运算能力,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=
2
,DC=SD=2,点M在侧棱SC上,∠ABM=60°
(I)证明:M是侧棱SC的中点;
(2)求二面角S-AM-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD为平行四边形,SA⊥平面ABCD,AB=2,AD=1,SB=
7
,∠BAD=120°,E在棱SD上,且SE=3ED.
(I)求证:SD⊥平面AEC;
(II)求直线AD与平面SCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是菱形的四棱锥S-ABCD中,SA=AB=2,SB=SD=2
2

(1)证明:BD⊥平面SAC;
(2)问:侧棱SD上是否存在点E,使得SB∥平面ACE?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,SD=AD,DF⊥SB垂足为F,E是SD的中点.
(Ⅰ)证明:SA∥平面BDE;
(Ⅱ)证明:平面SBD⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中.ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=
3
AD.E为CD上一点,且CE=3DE.
(1)求证:AE⊥平面SBD;
(2)M、N分别在线段CD、SB上的点,是否存在M、N,使MN⊥CD且MN⊥SB,若存在,确定M、N的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案