精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段图象如图所示,则过点P(ω,φ),且斜率为A的直线方程是(  )
A.y-$\frac{π}{3}$=$\sqrt{3}$(x-2)B.y-$\frac{2π}{3}$=$\sqrt{3}$(x-4)C.y-$\frac{2π}{3}$=2(x-4)D.y-$\frac{2π}{3}$=2(x-2)

分析 根据条件求出函数的周期,求出A,ω和φ的值,结合直线的点斜式方程进行求解即可.

解答 解:由图象知是函数的周期T=2[$\frac{5π}{24}$-(-$\frac{π}{24}$)]=2×$\frac{π}{4}$=$\frac{π}{2}$,即$\frac{2π}{ω}$=$\frac{π}{2}$,
则ω=4,即f(x)=Asin(4x+φ),
∵f($\frac{5π}{24}$)=Asin(4×$\frac{5π}{24}$+φ)=-A,
∴sin($\frac{5π}{6}$+φ)=-1,则$\frac{5π}{6}$+φ=$\frac{3π}{2}$+2kπ,
即φ=$\frac{2π}{3}$+2kπ,
∵0<φ<π,∴当k=0时,φ=$\frac{2π}{3}$,
则f(x)=Asin(4x+$\frac{2π}{3}$),
∵f(0)=$\sqrt{3}$,
∴Asin$\frac{2π}{3}$=$\sqrt{3}$,
即$\frac{\sqrt{3}}{2}$A=$\sqrt{3}$,则A=2,
即直线过点P(4,$\frac{2π}{3}$),且斜率为2的直线方程为y-$\frac{2π}{3}$=2(x-4),
故选:C

点评 本题主要考查三角函数的解析式的求解以及直线方程的求解,利用数形结合求出A,ω和φ的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.计算(-3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$-tan(-$\frac{11π}{6}$)+lg0.2+$\frac{1}{3}$lg$\frac{1}{8}$的值为$-\frac{5+\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.己知实数x、y满足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$,若存在x、y满足(x+1)2+(y-1)2=r2(r>0),则r的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{4}{3}$$\sqrt{2}$D.$\frac{4}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱柱ABC-A1B1C1的侧棱长为4,底面边长都为3,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为(  )
A.$\frac{9}{16}$B.$\frac{3}{4}$C.$\frac{3\sqrt{3}}{16}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:x2+(y-2)2=4.
(1)以O为极点,x轴正半轴为极轴建立极坐标系,求圆C1,C2的极坐标方程及其交点的极坐标;
(2)求圆C1与C2公共弦的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρ2-2ρcosθ-2ρsinθ+1=0,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2-\frac{2}{\sqrt{5}}t}\\{y=\frac{1}{\sqrt{5}}t}\end{array}\right.$(t为参数)
(Ⅰ)若曲线C1与C2的交点为A,B,求|AB|;
(Ⅱ)已知点M(ρ,θ)在曲线C1上,求ρ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn=n2,n∈N+
(1)证明:数列{an}是等差数列;
(2)设bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定义在R上的单调递增奇函数f(x),若当0≤θ≤$\frac{π}{2}$时,f(cos2θ+2msinθ)+f(-2m-2)<0恒成立,则实数m的取值范围是m>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=\frac{1}{2-x}$的图象与函数y=2sin(πx-π)(-2≤x≤6)的图象所有交点的横坐标之和等于(  )
A.4B.8C.10D.16

查看答案和解析>>

同步练习册答案