A. | y-$\frac{π}{3}$=$\sqrt{3}$(x-2) | B. | y-$\frac{2π}{3}$=$\sqrt{3}$(x-4) | C. | y-$\frac{2π}{3}$=2(x-4) | D. | y-$\frac{2π}{3}$=2(x-2) |
分析 根据条件求出函数的周期,求出A,ω和φ的值,结合直线的点斜式方程进行求解即可.
解答 解:由图象知是函数的周期T=2[$\frac{5π}{24}$-(-$\frac{π}{24}$)]=2×$\frac{π}{4}$=$\frac{π}{2}$,即$\frac{2π}{ω}$=$\frac{π}{2}$,
则ω=4,即f(x)=Asin(4x+φ),
∵f($\frac{5π}{24}$)=Asin(4×$\frac{5π}{24}$+φ)=-A,
∴sin($\frac{5π}{6}$+φ)=-1,则$\frac{5π}{6}$+φ=$\frac{3π}{2}$+2kπ,
即φ=$\frac{2π}{3}$+2kπ,
∵0<φ<π,∴当k=0时,φ=$\frac{2π}{3}$,
则f(x)=Asin(4x+$\frac{2π}{3}$),
∵f(0)=$\sqrt{3}$,
∴Asin$\frac{2π}{3}$=$\sqrt{3}$,
即$\frac{\sqrt{3}}{2}$A=$\sqrt{3}$,则A=2,
即直线过点P(4,$\frac{2π}{3}$),且斜率为2的直线方程为y-$\frac{2π}{3}$=2(x-4),
故选:C
点评 本题主要考查三角函数的解析式的求解以及直线方程的求解,利用数形结合求出A,ω和φ的值是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{4}{3}$$\sqrt{2}$ | D. | $\frac{4}{3}$$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{9}{16}$ | B. | $\frac{3}{4}$ | C. | $\frac{3\sqrt{3}}{16}$ | D. | $\frac{3}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 8 | C. | 10 | D. | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com