£¨2012•ÆÖ¶«ÐÂÇøÈýÄ££©ÒÑÖª¼¯ºÏA={a1£¬a2¡­an}£¨0¡Üa1£¼a2£¼¡­£¼an£¬n¡ÊN*£¬n¡Ý3£©¾ßÓÐÐÔÖÊP£º¶ÔÈÎÒâi£¬j£¨1¡Üi¡Üj¡Ün£©£¬ai+ajÓëaj-aiÖÁÉÙÒ»¸öÊôÓÚA£®
£¨1£©·Ö±ðÅжϼ¯ºÏM={0£¬2£¬4}ÓëN=£¨1£¬2£¬3£©ÊÇ·ñ¾ßÓÐÐÔÖÊP£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©¢ÙÇóÖ¤£º0¡ÊA£»¢ÚÇóÖ¤£ºa1+a2+a3+¡­+an=
n2
an
£»
£¨3£©Ñо¿µ±n=3£¬4ºÍ5ʱ£¬¼¯ºÏAÖеÄÊýÁÐ{an}ÊÇ·ñÒ»¶¨³ÉµÈ²îÊýÁУ®
·ÖÎö£º£¨1£©ÀûÓÃж¨Ò壬¿ÉÒÔÅжϼ¯ºÏM={0£¬2£¬4}¾ßÓÐÐÔÖÊP£¬N={1£¬2£¬3}²»¾ßÓÐÐÔÖÊP£»
£¨2£©¢ÙÈôÊýÁÐA¾ßÓÐÐÔÖÊP£¬Ôòan+an=2anÓëan-an=0Á½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊǸÃÊýÁÐÖеÄÒ»Ï´Ó¶ø¿ÉµÃ0¡ÊA£»
¢ÚÁîj=n£¬i£¾1£¬¿ÉµÃan-aiÊôÓÚA£¬Ö¤Ã÷an=ai+an+1-i£¬µ¹ÐòÏà¼Ó¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©È·¶¨a1=0£¬ÔÙÀûÓÃж¨Ò壬¼´¿ÉÅжϾßÓÐÐÔÖÊPµÄ¼¯ºÏAÖеÄÊýÁÐ{an}ÊÇ·ñÒ»¶¨³ÉµÈ²îÊýÁУ®
½â´ð£º£¨1£©½â£º¼¯ºÏM={0£¬2£¬4}¾ßÓÐÐÔÖÊP£¬N={1£¬2£¬3}²»¾ßÓÐÐÔÖÊP£®
¡ß¼¯ºÏM={0£¬2£¬4}ÖУ¬aj+aiÓëaj-ai£¨1¡Üi¡Üj¡Ü2£©Á½ÊýÖж¼ÊǸÃÊýÁÐÖеÄÏ4-2ÊǸÃÊýÁÐÖеÄÏ
¡à¼¯ºÏM={0£¬2£¬4}¾ßÓÐÐÔÖÊP£»
N={1£¬2£¬3}ÖУ¬3Ôڴ˼¯ºÏÖУ¬ÔòÓÉÌâÒâµÃ3+3ºÍ3-3ÖÁÉÙÒ»¸öÒ»¶¨ÔÚ£¬¶ø3+3=6²»ÔÚ£¬ËùÒÔ3-3=0Ò»¶¨ÊÇÕâ¸ö¼¯ºÏµÄÔªËØ£¬¶ø´Ë¼¯ºÏûÓÐ0£¬¹Ê²»¾ßÓÐÐÔÖÊP£»
£¨2£©Ö¤Ã÷£º¢ÙÈôÊýÁÐA¾ßÓÐÐÔÖÊP£¬Ôòan+an=2anÓëan-an=0Á½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊǸÃÊýÁÐÖеÄÒ»Ï
¡ß0¡Üa1£¼a2£¼¡­£¼an£¬n¡Ý3£¬¶ø2an²»ÊǸÃÊýÁÐÖеÄÏ¡à0ÊǸÃÊýÁÐÖеÄÏ
¡à0¡ÊA£»
¢ÚÁîj=n£¬i£¾1£¬Ôò¡ß¡°ai+ajÓëaj-aiÁ½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊôÓÚA¡±£¬
¡àai+aj²»ÊôÓÚA£¬¡àan-aiÊôÓÚA
Áîi=n-1£¬ÄÇôan-an-1ÊǼ¯ºÏAÖÐijÏa1²»ÐУ¬ÊÇ0£¬a2¿ÉÒÔ£®
Èç¹ûÊÇa3»òÕßa4£¬ÄÇô¿ÉÖªan-a3=an-1£¬ÄÇôan-a2£¾an-a3=an-1£¬Ö»ÄÜÊǵÈÓÚanÁË£¬Ã¬¶Ü£®
ËùÒÔÁîi=n-1¿ÉÒԵõ½an=a2+an-1£¬
ͬÀí£¬Áîi=n-2¡¢n-3£¬¡­£¬2£¬¿ÉÒԵõ½an=ai+an+1-i£¬
¡àµ¹ÐòÏà¼Ó¼´¿ÉµÃµ½a1+a2+a3+¡­+an=
n
2
an
£»
£¨3£©½â£ºn=3ʱ£¬¡ßÊýÁÐa1£¬a2£¬a3¾ßÓÐÐÔÖÊP£¬0¡Üa1£¼a2£¼a3
¡àa2+a3Óëa3-a2ÖÁÉÙÓÐÒ»¸öÊǸÃÊýÁÐÖеÄÒ»Ï
¡ßa1=0£¬a2+a3²»ÊǸÃÊýÁеÄÏ¡àa3-a2=a2£¬¡àa1+a3=2a2£¬ÊýÁÐ{an}Ò»¶¨³ÉµÈ²îÊýÁУ»
n=4ʱ£¬¡ßÊýÁÐa1£¬a2£¬a3£¬a4¾ßÓÐÐÔÖÊP£¬0¡Üa1£¼a2£¼a3£¼a4£¬
¡àa3+a4Óëa4-a3ÖÁÉÙÓÐÒ»¸öÊǸÃÊýÁÐÖеÄÒ»Ï
¡ßa3+a4²»ÊǸÃÊýÁеÄÏ¡àa4-a3=a2£¬»òa4-a3=a3£¬
Èôa4-a3=a2£¬ÔòÊýÁÐ{an}Ò»¶¨³ÉµÈ²îÊýÁУ»Èôa4-a3=a3£¬ÔòÊýÁÐ{an}²»Ò»¶¨³ÉµÈ²îÊýÁУ»
n=5ʱ£¬¡ßÊýÁÐa1£¬a2£¬a3£¬a4£¬a5ÓÐÐÔÖÊP£¬0¡Üa1£¼a2£¼a3£¼a4£¼a5£¬
¡àa4+a5Óëa5-a4ÖÁÉÙÓÐÒ»¸öÊǸÃÊýÁÐÖеÄÒ»Ï
¡ßa4+a5²»ÊǸÃÊýÁеÄÏ¡àa5-a4=a2£¬»òa5-a4=a3£¬»òa5-a4=a4£¬
Èôa5-a4=a4£¬a4-a3=a2£¬ÔòÊýÁÐ{an}Ò»¶¨³ÉµÈ²îÊýÁУ»Èôa5-a4=a2£¬»òa5-a4=a3£¬ÔòÊýÁÐ{an}²»Ò»¶¨³ÉµÈ²îÊýÁУ®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄ×ÛºÏÓ¦Ó㬿¼²éѧÉúµÄÓ¦ÓÃ֪ʶ·ÖÎö¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÆÖ¶«ÐÂÇøһģ£©º¯Êýy=
log2(x-2) 
µÄ¶¨ÒåÓòΪ
[3£¬+¡Þ£©
[3£¬+¡Þ£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÆÖ¶«ÐÂÇøһģ£©ÈôXÊÇÒ»¸ö·Ç¿Õ¼¯ºÏ£¬MÊÇÒ»¸öÒÔXµÄijЩ×Ó¼¯ÎªÔªËصļ¯ºÏ£¬ÇÒÂú×㣺
¢ÙX¡ÊM¡¢∅¡ÊM£»
¢Ú¶ÔÓÚXµÄÈÎÒâ×Ó¼¯A¡¢B£¬µ±A¡ÊMÇÒB¡ÊMʱ£¬ÓÐA¡ÈB¡ÊM£»
¢Û¶ÔÓÚXµÄÈÎÒâ×Ó¼¯A¡¢B£¬µ±A¡ÊMÇÒB¡ÊMʱ£¬A¡ÉB¡ÊM£»
Ôò³ÆMÊǼ¯ºÏXµÄÒ»¸ö¡°M-¼¯ºÏÀࡱ£®
ÀýÈ磺M={∅£¬{b}£¬{c}£¬{b£¬c}£¬{a£¬b£¬c}}ÊǼ¯ºÏX={a£¬b£¬c}µÄÒ»¸ö¡°M-¼¯ºÏÀࡱ£®ÒÑÖª¼¯ºÏX={a£¬b£¬c}£¬ÔòËùÓк¬{b£¬c}µÄ¡°M-¼¯ºÏÀࡱµÄ¸öÊýΪ
10
10
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÆÖ¶«ÐÂÇø¶þÄ££©ÊÖ»ú²úÒµµÄ·¢Õ¹´ßÉúÁËÍøÂçÐÂ×Ö¡°ŒI¡±£®Ä³Ñ§Éú×¼±¸ÔÚ¼ÆËã»úÉÏ×÷³öÆä¶ÔÓ¦µÄͼÏó£¬ÆäÖÐA£¨2£¬2£©£¬ÈçͼËùʾ£®ÔÚ×÷ÇúÏ߶ÎABʱ£¬¸ÃѧÉúÏë°Ñº¯Êýy=x
1
2
£¬x¡Ê[0£¬2]
µÄͼÏó×÷Êʵ±±ä»»£¬µÃµ½¸Ã¶Îº¯ÊýµÄÇúÏߣ®Çëд³öÇúÏ߶ÎABÔÚx¡Ê[2£¬3]É϶ÔÓ¦µÄº¯Êý½âÎöʽ
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÆÖ¶«ÐÂÇøһģ£©É踴ÊýzÂú×ã|z|=
10
£¬ÇÒ£¨1+2i£©z£¨iÊÇÐéÊýµ¥Î»£©ÔÚ¸´Æ½ÃæÉ϶ÔÓ¦µÄµãÔÚÖ±Ïßy=xÉÏ£¬Çóz£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÆÖ¶«ÐÂÇø¶þÄ££©ÒÑÖªz=
1
1+i
£¬Ôò
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸