精英家教网 > 高中数学 > 题目详情
我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为的直线方程为1x(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为的平面方程为    
【答案】分析:类比求曲线方程的方法,我们可以用坐标法,求空间坐标系中平面的方程.任取平面内一点P(x,y,z),则根据,即,将A点坐标及的坐标代入易得平面的方程.
解答:解:根据法向量的定义,若为平面α的法向量
⊥α,任取平面α内一点P(x,y,z),

∵PA=(1-x,2-y,3-z),

∴(x-1)+2(y-2)+(3-z)=0
即:x+2y-z-2=0
故答案为:x+2y-z-2=0
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).由于平面向量与空间向量的运算性质相似,故我们可以利用求平面曲线方程的办法,构造向量,利用向量的性质解决空间内平面方程的求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为
n
=(1,-2)
的直线方程为1x(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为
n
=(-1,-2,1)
的平面方程为
 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏南四校高三(上)12月月考数学试卷(解析版) 题型:填空题

我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为的直线方程为1x(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为的平面方程为    

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南师大附中高考适应性月考数学试卷4(理科)(解析版) 题型:填空题

我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为的直线方程为1x(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为的平面方程为    

查看答案和解析>>

科目:高中数学 来源:2009-2010学年山东省泰安市肥城市省级规范化学校高三第三次联考数学试卷2(文理合卷)(解析版) 题型:解答题

我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为的直线方程为1x(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为的平面方程为    

查看答案和解析>>

同步练习册答案