【题目】已知圆C1:与圆C2:相交于A、B两点,
(1)求公共弦AB所在的直线方程;
(2)求圆心在直线上,且经过A、B两点的圆的方程.
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 (t为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,圆C的极坐标方程为 .
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆面 的公共点,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 , 是非零向量,则“ , 共线”是“| |+| |=| + |”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l经过两直线l1:2x-y+4=0与l2:x-y+5=0的交点,且与直线x-2y-6=0垂直.
(1)求直线l的方程.
(2)若点P(a,1)到直线l的距离为,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,
(1)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是直角梯形的四棱锥S-ABCD中,面.
(1)求四棱锥S-ABCD的体积;
(2)求证:面
(3)求SC与底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)在四棱锥中, ,
, 平面,直线PC与平面ABCD所成角为, .
(Ⅰ)求四棱锥的体积;
(Ⅱ)若为的中点,求证:平面 平面.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com