精英家教网 > 高中数学 > 题目详情

【题目】已知直线l过点P(3,6)且与x,y轴的正半轴分别交于A、B两点,O是坐标原点,则当|OA|+|OB|取得最小值时的直线方程是(用一般式表示)

【答案】 x+y﹣6﹣3 =0
【解析】解:由题意可得:设直线的斜率为k,因为直线l与x轴的正半轴,y轴的正半轴分别交于A、B两点,
所以得到k<0.
则直线l的方程为:y﹣6=k(x﹣3),整理可得:kx﹣y+6﹣3k=0,
令x=0,得y=6﹣3k,所以B(0,6﹣3k);
令y=0,得到x=3﹣ ,所以A(3﹣ ,0),
所以|OA|+|OB|=6﹣3k+3﹣ =9+(﹣3k)+(﹣ ),
因为k<0,则|OA|+|OB|=9+(﹣3k)+(﹣ )≥9+6
当且仅当﹣3k=﹣ ,即k=﹣ 时“=”成立,
所以直线l的方程为: x+y﹣6﹣3 =0,
所以答案是: x+y﹣6﹣3 =0.
【考点精析】关于本题考查的一般式方程,需要了解直线的一般式方程:关于的二元一次方程(A,B不同时为0)才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成 5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示.成绩落在[70,80)中的人数为20.

男生

女生

合计

优秀

不优秀

合计

(Ⅰ)求a和n的值;

(Ⅱ)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数和中位数m;

(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.

参考公式和数据:K2=

P(K2≥k)

0.50

0.05

0.025

0.005

k

0.455

3.841

5.024

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中

.且点为线段的中点, 现将△沿进行翻折,使得二面角

的大小为,得到图形如图(2)所示,连接,点分别在线段上.

(1)证明:

(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是空间两条直线, 是空间两个平面,则下列命题中不正确的是( )

A. 时,“”是“”的充要条件

B. 时,“”是“”的充分不必要条件

C. 时,“”是“”的必要不充分条件

D. 时,“”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解初三女生身高情况,某中学对初三女生身高情况进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别

频数

频率

145.5~149.5

1

0.02

149.5~153.5

4

0.08

153.5~157.5

20

0.40

157.5~161.5

15

0.30

161.5~165.5

8

0.16

165.5~169.5

m

n

合 计

M

N


(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图;
(3)全体女生中身高在哪组范围内的人数最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)是否存在实数,使恒成立,若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]以平面直角坐标系原点为极点,x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位,已知曲线的参数方程为,( 为参数,且),曲线的极坐标方程为

(1)求的极坐标方程与的直角坐标方程;

(2))若P是上任意一点,过点P的直线于点M,N,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张老师开车上班,有路线①与路线②两条路线可供选择. 路线①:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间2分钟;若处遇红灯或黄灯,则导致延误时间3分钟;若两处都遇绿灯,则全程所花时间为20分钟.

路线②:沿途有两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为,若处遇红灯或黄灯,则导致延误时间8分钟;若处遇红灯或黄灯,则导致延误时间5分钟;若两处都遇绿灯,则全程所花时间为15分钟.

(1)若张老师选择路线①,求他20分钟能到校的概率;

(2)为使张老师日常上班途中所花时间较少,你建议张老师选择哪条路线?并说明理由.

查看答案和解析>>

同步练习册答案