精英家教网 > 高中数学 > 题目详情
设函数在R上存在导数,对任意的R,有,且(0,+)时,.若,则实数a的取值范围为(   )
A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)
B

试题分析:设,,,所以既是增函数又是奇函数,,由已知,得,故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.
(1)当a=1时,求函数f(x)的最小值;
(2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立;
(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若的极大值为,求实数的值;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)= f(x0)+ f(k)(k为常数),则称“f(x)关于k可线性分解”. 设,若关于实数a 可线性分解,求取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列函数的导数:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P是曲线上的任意一点,则点P到直线y=x-2的最小距离为(  )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•重庆)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0
(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数()的图象如图所示,则不等式的解集为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2011•浙江)设函数f(x)=(x﹣a)2lnx,a∈R
(1)若x=e为y=f(x)的极值点,求实数a;
(2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

同步练习册答案