【题目】已知函数f(x)=x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时, x2+lnx<x3.
科目:高中数学 来源: 题型:
【题目】空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 | >250 |
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类型 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(1)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(2)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(3)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆以,为焦点,且离心率
(1)求椭圆的方程;
(2)过点斜率为的直线与椭圆有两个不同交点、,求的范围;
(3)设椭圆与轴正半轴、轴正半轴的交点分别为、,是否存在直线,满足(2)中的条件且使得向量与垂直?如果存在,写出的方程;如果不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.
(1)求椭圆C的标准方程;
(2)直线x=﹣2与椭圆交于P,Q两点,A,B是椭圆上位于直线x=﹣2两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求证:
(1)数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设p:实数x满足x2﹣4ax+3a2<0; q:实数x满足<0.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B、C、D为平面四边形ABCD的四个内角.
(1)证明:tan ;
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面为梯形的四棱锥S﹣ABCD中,已知AD∥BC,∠ASC=60°,∠BAD=135°,AD=DC= ,SA=SC=SD=2,O为AC中点.
(1)求证:SO⊥平面ABCD;
(2)求二面角A﹣SB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD所在的平面与平面AEB垂直,且∠ BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点.
(1)求证:直线DE与平面FGH平行;
(2)若点P在直线GF上,且二面角D-BP-A的大小为,试确定点P的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com