精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设 ,则得到函数y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.

【答案】解:(1)如图所示,建立直角坐标系.

∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),

∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).

=x ,(0≤x≤1).

= +x =(﹣2,0)+x(1,a)=(x﹣2,xa),

= =(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa)

∴y=f(x)= =(2﹣x,﹣xa)(2﹣x,a﹣xa)

=(2﹣x)2﹣ax(a﹣xa)

=(a2+1)x2﹣(4+a2)x+4.

∴f(1)=a2+1﹣(4+a2)+4=1

(Ⅱ)由y=f(x)=(a2+1)x2﹣(4+a2)x+4.

可知:对称轴x0=

当0<a≤ 时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.

当a> 时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.

又f(0)=4,f(1)=1,

∴f(x)max=f(0)=4.

综上所述函数f(x)的最大值为4


【解析】(Ⅰ)画出图形,建立直角坐标系,即得y=f(x)的解析式,代值计算即可(Ⅱ)通过分类讨论,利用二次函数的单调性即可判断出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中 ①若loga3>logb3,则a>b;
②函数f(x)=x2﹣2x+3,x∈[0,+∞)的值域为[2,+∞);
③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;
④函数 既是奇函数又是减函数.
其中正确的命题有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ 为定义在R上的奇函数.
(1)试判断函数的单调性,并用定义加以证明;
(2)若关于x的方程f(x)=m在[﹣1,1]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x,y满足 且z=y﹣x的最小值为﹣4,则k的值为(
A.2
B.﹣2
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的值域为 . (其中[x]表示不大于x的最大整数,例如[3.15]=3,[0.7]=0.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个平面垂直,下列命题: ①一个平面内的已知直线必垂直于另一个平面内的任意一条直线.
②一个平面内的已知直线必垂直于另一个平面内的无数条直线.
③一个平面内的任一条直线必垂直于另一个平面.
④一个平面内垂直于交线的直线与另一个平面垂直.
其中正确命题的个数是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD中平面PAB⊥平面ABCD,底面ABCD是正方形.点M是棱PC的中点
(1)记平面ADM与平面PBC的交线是l,试判断直线l与BC的位置关系,并加以证明.
(2)若 ,求证PB⊥平面ADM,并求直线PC与平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,其前n项和为Sn , 且满足an= (n≥2)
(1)求Sn
(2)证明:当n≥2时,S1+ S2+ S3+…+ Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式ax2+bx﹣2<0的解集为{x|﹣2<x< },则ab等于(
A.﹣28
B.﹣26
C.28
D.26

查看答案和解析>>

同步练习册答案