【题目】已知为常数, ,函数, (其中是自然对数的底数).
(1)过坐标原点作曲线的切线,设切点为,求证: ;
(2)令,若函数在区间上是单调函数,求的取值范围.
【答案】(1) ;(2) .
【解析】试题分析:(1)先对函数求导, ,可得切线的斜率,即,由是方程的解,且在上是增函数,可证;(2)由, ,先研究函数,则,由在上是减函数,可得,通过研究的正负可判断的单调性,进而可得函数的单调性,可求出参数范围.
试题解析:(1)(),
所以切线的斜率,
整理得,显然, 是这个方程的解,
又因为在上是增函数,
所以方程有唯一实数解,
故.
(2), ,
设,则,
易知在上是减函数,从而.
①当,即时, , 在区间上是增函数,
∵,∴在上恒成立,即在上恒成立.
∴在区间上是减函数,所以满足题意.
②当,即时,设函数的唯一零点为,
则在上递增,在上递减,
又∵,∴,
又∵,
∴在内有唯一一个零点,
当时, ,当时, .
从而在递减,在递增,与在区间上是单调函数矛盾.
∴不合题意.综上①②得, .
科目:高中数学 来源: 题型:
【题目】不等式2x2﹣x﹣3>0解集为( )
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若不等式x2﹣ax+b<0的解集为(1,2),则不等式 < 的解集为( )
A.( ,+∞)
B.(﹣∞,0)∪( ,+∞)
C.( ,+∞)
D.(﹣∞,0)∪( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布直方图.
(1)为了能选拔出优秀的学生,该校决定在笔试成绩较高的第3组、第4组、第5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试;
(2)在(1)的前提下,学校决定在6名学生中随机抽取2名学生由考官A面试,求第4组至少有一名学生被考官A面试的概.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设M={x| },N={x|x2+(a﹣8)x﹣8a≤0},命题p:x∈M,命题q:x∈N.
(1)当a=﹣6时,试判断命题p是命题q的什么条件;
(2)求a的取值范围,使命题p是命题q的一个必要但不充分条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com