精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-2x+4y-4=0.
(1)写出圆C的标准方程;
(2)是否存在斜率为1的直线m,使m被圆C截得的弦为AB,且以AB为直径的圆过原点.若存在,求出直线m的方程;若不存在,说明理由.
(1)∵x2+y2-2x+4y-4=0,
∴(x-1)2+(y+2)2=32
(2)设存在斜率为1的直线m,其方程为y=x+b,
与圆C的方程x2+y2-2x+4y-4=0联立得:2x2+(2b+2)x+b2+4b-4=0,
∵△=4(b+1)2-8(b2+4b-4)>0,
∴-3-3
2
<b<-3+3
2

设交点A(x1,y1)B(x2,y2),x1、x2为方程2x2+(2b+2)x+b2+4b-4=0的两根,
∴x1+x2=-(b+1),x1x2=
b2+4b-4
2

∵以AB为直径的圆过原点,
∴向量
OA
OB
=0,
∴x1x2+y1y2=0
∴2x1x2+b(x1+x2)+b2=0,
∴b2+3b-4=0
∴b=-4或b=1,均满足-3-3
2
<b<-3+3
2

∴m为y=x+1 或 y=x-4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

定义:如果一条直线同时与n个圆相切,则称这条直线为这n个圆的公切线.已知有2013个圆Cn:(x-an2+(y-bn2=rn2(n=1,2,3,…,2013),其中an ,bn,rn的值由如图程序给出,则这2013个圆的公切线条数(  )
A.只有一条B.恰好有两条C.有超过两条D.没有公切线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线y=k(x-2)与曲线y=
1-x2
有交点,则(  )
A.k有最大值
3
3
,最小值-
3
3
B.k有最大值
1
2
,最小值-
1
2
C.k有最大值0,最小值-
3
3
D.k有最大值0,最小值-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

当曲线y=1+
4-x2
与直线kx-y-2k+4=0有两个相异的交点时,实数k的取值范围是(  )
A.(0,
5
12
)
B.(
1
3
3
4
]
C.(
5
12
3
4
]
D.(
5
12
,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设O为坐标原点,C为圆x2+y2-4x+1=0的圆心,圆上有一点M(x,y)满足OM⊥CM,则
y
x
=(  )
A.
3
3
B.
3
3
或-
3
3
C.
3
D.
3
或-
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程是:x2+y2-2ax+2(a-2)y+2=0,其中a≠1,且a∈R.
(Ⅰ)求证:a取不为1的实数时,上述圆恒过定点;
(Ⅱ)求恒与圆相切的直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程是x2+y2=1,直线y=x+b.当b为何值时,
(1)圆与直线有两个公共点;
(2)圆与直线没有公共点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值.

查看答案和解析>>

同步练习册答案