(本小题满分13分)
已知数列{an}的前n项和为Sn,Sn=2-(+1)an(n≥1).
(1)求证:数列{}是等比数列;
(2)设数列{2nan}的前n项和为Tn,An=.试比较An与的大小。
解:(1)由a1=S1=2-3a1得a1=, 1分
由Sn=2-(+1)an得Sn-1=2-(+1)an-1,
于是an=Sn- Sn-1=(+1)an-1-(+1)an,
整理得=×(n≥2), 4分
所以数列{}是首项及公比均为的等比数列. 5分
(2)由(Ⅰ)得=×=. 6分
于是2nan=n,Tn=1+2+3+…+n=, 7分
,
An=2[(1-)+(-)+…+=2(1-)=.
9分
又=,问题转化为比较与的大小,即与的大小.
设f(n)= ,g(n)=.
∵f(n+1)-f(n)=,当n≥3时, f(n+1)-f(n)>0,
∴当n≥3时f(n)单调递增, 11分
∴当n≥4时,f(n) ≥f(4)=1,而g(n)<1, ∴当n≥4时f(n) >g(n),
经检验n=1,2,3时,仍有f(n) ≥g(n),
因此,对任意正整数n,都有f(n) >g(n),
即An <. 13分
解析
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com