已知函数
(1)求函数的单调区间.
(2)若方程有4个不同的实根,求的范围?
(3)是否存在正数,使得关于的方程有两个不相等的实根?如果存在,求b满足的条件,如果不存在,说明理由.
(1)增区间为,减区间为;(2);(3)不存在,理由见详解.
【解析】
试题分析:(1)首先求导函数,然后通过判断的符号可求得单调区间;(2)构造函数,然后利用导数研究函数的取值变化,确定图象的位置,由图象可直观得到函的取值范围;(3)
试题解析:(1)根据定义域后,求导得到,
根据导数和0的关系得到在是函数的增区间;在是函数减区间.
(2)(2)令,求导得,
里面有一个零点和两个断点,所以初步可以得到函数在区间单调增;在区间单调减.
当从负半轴方向趋近于-1时,
当从正半轴方向趋近于-1时,
而且时,,
而且可以很容易得到,函数为偶函数,而且,
另半边的图像就容易模拟得到了,所以有4个不同的实根,结合图像得到.
(本题必须另半边如果不分析必须用奇偶性说明;而且必须说明在断点处的趋势,否则扣2到3分)
(3)结论:这样的正数不存在.
假设存在满足条件的,使得方程存在两个不相等的实根和,然后代入方程,根据其结构利用第(1)问的结论判断出在上的取值及单调性,然后结合假设导出矛盾,作出判断.
假设存在正数,使得方程存在两个不相等的实根和,则
根据定义域知道和都是正数.
根据第1问知道,当时,函数的最小值,
所以,
因为,等式两边同号,所以,所以
不妨设
由(1)(2)可得,
所以,
所以.
因为很容易证明到函数在为恒大于0且为减函数
所以(*)方程显然不成立,因为左边大于1,右边小于1.
所以原假设:存在正数,使得方程存在两个不相等的实根和错误(本题其他证法,请酌情给分)
考点:1、导数与函数的单调性关系;2、探索性问题;3、函数与方程根的关系.
科目:高中数学 来源:2013-2014学年四川省高三下学期3月月考文科数学试卷(解析版) 题型:选择题
执行如图所示的程序框图,若输入的值为3,则输出的值是( )
A.1 B.2 C.4 D.7
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省资阳市高三下学期4月高考模拟考试文科数学试卷(解析版) 题型:选择题
已知实数,执行右图所示的程序框图,则输出x的值不小于55的概率为( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三第六期3月阶段性考试文科数学试卷(解析版) 题型:填空题
辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,时速在的汽车大约有______辆.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三二诊模拟理科数学试卷(解析版) 题型:解答题
等比数列中,已知.
(1)求数列的通项公式;
(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年四川省高三二诊模拟理科数学试卷(解析版) 题型:选择题
已知定义在上的函数满足为奇函数,函数关于直线对称,则下列式子一定成立的是( )
B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com