精英家教网 > 高中数学 > 题目详情
已知f(x)是偶函数,它在[0,+∞)上是减函数,若,则f(lgx)>f(1)的取值范围是(  )
A、(
1
10
,1)
B、(0,
1
10
)∪(1,+∞)
C、(
1
10
,10)
D、(0,1)∪(10,+∞)
分析:利用偶函数的性质,f(1)=f(-1),在[0,+∞)上是减函数,在(-∞,0)上单调递增,列出不等式,解出x的取值范围.
解答:解:∵f(x)是偶函数,它在[0,+∞)上是减函数,
∴f(x)在(-∞,0)上单调递增,
由f(lgx)>f(1),f(1)=f(-1)
得:-1<lgx<1,
1
10
<x<10,
故答案选C.
点评:本题考查偶函数的性质及函数单调性的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知f(x)是偶函数,x∈R,若将f(x)的图象向右平移一个单位又得到一个奇函数,若f(2)=-1,则f(1)+f(2)+f(3)+…+f(2006)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax+1)≤f(x-2)在x∈[
1
2
,1]
上恒成立,则实数a的取值范围是(  )
A、[-2,1]
B、[-5,0]
C、[-5,1]
D、[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知f(x)是偶函数,且在[a,b]上是减函数,试判断f(x)在[-b,-a]上的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,当x≥0时,f(x)=-x2+4x,求当x<0时,f(x)=
-x2-4x
-x2-4x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)已知f(x)是偶函数,当.x∈[0,
π
2
]时,f(x)=xsinx,若a=f(cos1),b=f(cos2),c=f(cos3),则 a,b,c 的大小关系为(  )

查看答案和解析>>

同步练习册答案