精英家教网 > 高中数学 > 题目详情
已知数列{an}的首项a1=5,前n项和为Sn.若Sn+1=2Sn+n+5(n∈N*),则数列{an+1}是等比数列.
(1)写出该命题的逆命题;
(2)证明原命题是真命题.
考点:四种命题
专题:等差数列与等比数列,简易逻辑
分析:(1)根据原命题与逆命题之间的关系,写出它的逆命题即可;
(2)根据等比数列的定义,结合前n项和公式,即可证明数列{an+1}是等比数列.
解答: 解:(1)∵原命题是数列{an}的首项a1=5,前n项和为Sn,若Sn+1=2Sn+n+5(n∈N*),则数列{an+1}是等比数列;
∴它的逆命题是数列{an}的首项a1=5,前n项和为Sn,若数列{an+1}是等比数列,则Sn+1=2Sn+n+5(n∈N*);
(2)证明:在数列{an}中,a1=5,前n项和为Sn
且Sn+1=2Sn+n+5(n∈N*),
∴Sn=2Sn-1+(n-1)+5,
∴(Sn+1-Sn)=2(Sn-Sn-1)+[n-(n-1)]+(5-5);
即an+1=2an+1,
∴an+1+1=2an+2,
an+1+1
an+1
=2;
∴数列{an+1}是以公比q=2,首项为a1+1=5+1=6的等比数列.
∴原命题是真命题.
点评:本题考查了四种命题之间的关系,也考查了等比数列的定义与前n项和公式的应用问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
1+x2
的值域是(  )
A、(0,1)
B、(0,1]
C、[0,1)
D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

若α,β均为锐角,sinα=
2
5
5
,cos(α+β)=-
4
5
,则cosβ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1,a10是方程2x2+4x+1=0的两根,则a4•a7的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设α,β是锐角,且cosα=
1
7
,sin(α+β)=
5
3
14
,则β=(  )
A、
π
6
B、
π
3
C、
π
4
D、
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={1,
a
b
,b},集合B={0,a+b,b2},且P=B,求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=
1
x
,x>0},B={x|y=ln(2x-4)},若m∈A,m∉B,则实数m的取值范围是(  )
A、(-∞,0)
B、(2,+∞)
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

4lo
g
 
2
3
log2
1
8
=
 

查看答案和解析>>

同步练习册答案