精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+1|. (I)求不等式f(x)<|2x+1|﹣1的解集M;
(Ⅱ)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).

【答案】解:(I)不等式f(x)<|2x+1|﹣1,即|x+1|<|2x+1|﹣1, ∴ ①,或 ②,或 ③.
解①求得x<﹣1;解②求得x∈;解③求得x>1.
故要求的不等式的解集M={x|x<﹣1或 x>1}.
(Ⅱ)证明:设a,b∈M,∴|a+1|>0,|b|﹣1>0,
则 f(ab)=|ab+1|,f(a)﹣f(﹣b)=|a+1|﹣|﹣b+1|.
∴f(ab)﹣[f(a)﹣f(﹣b)]=f(ab)+f(﹣b)﹣f(a)=|ab+1|+|1﹣b|﹣|a+1|
=|ab+1|+|b﹣1|﹣|a+1|≥|ab+1+b﹣1|﹣|a+1|=|b(a+1)|﹣|a+1|
=|b||a+1|﹣|a+1|=|a+1|(|b|﹣1|)>0,
故f(ab)>f(a)﹣f(﹣b)成立
【解析】(I)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得|a+1|>0,|b|﹣1>0,化简f(ab)﹣[f(a)﹣f(﹣b)]为|a+1|(|b|﹣1|)>0,从而证得不等式成立.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面平面分别为的中点.

(1)证明:平面平面

(2)求三棱锥的体积;

(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,的中点为,且平面

(1)证明:

(2)若,试画出二面角的平面角,并求它的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形ABCD如图1中,AD= ,AB=2,E为AB中点,将△ADE沿DE折起到△PDE,所得四棱锥P﹣BCDE如图2所示.

(Ⅰ)若点M为PC中点,求证:BM∥平面PDE;
(Ⅱ)当平面PDE⊥平面BCDE时,求三棱锥E﹣PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两直线

1)求直线的交点的坐标;

2)求过交点,且在两坐标轴截距相等的直线方程;

3)若直线不能构成三角形,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,解不等式

(Ⅱ)设是函数的四个不同的零点,问是否存在实数,使得其中三个零点成等差数列?若存在,求出所有的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(Ⅰ)求异面直线A1B与AC1所成角的余弦值;
(Ⅱ)求二面角B﹣A1D﹣A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)在图中作出点在底面的正投影,并说明理由.

查看答案和解析>>

同步练习册答案