精英家教网 > 高中数学 > 题目详情
如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.
(1)求证:AG•EF=CE•GD;
(2)求证:
【答案】分析:(1)要证明AG•EF=CE•GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题.
(2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG•GF,结合(1)的结论,不难得到要证明的结论.
解答:证明:(1)连接AB,AC,
∵AD为⊙M的直径,∴∠ABD=90°,
∴AC为⊙O的直径,∴∠CEF=∠AGD,
∵∠DFG=∠CFE,∴∠ECF=∠GDF,
∵G为弧BD中点,∴∠DAG=∠GDF,
∵∠ECB=∠BAG,∴∠DAG=∠ECF,
∴△CEF∽△AGD,

∴AG•EF=CE•GD

(2)由(1)知∠DAG=∠GDF,
∠G=∠G,
∴△DFG∽△AGD,
∴DG2=AG•GF,
由(1)知

点评:证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.
(1)求证:AG•EF=CE•GD;
(2)求证:
GF
AG
=
EF2
CE2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD的中点,连接AG分别交⊙O、BD于点E、F,连接CE.
(Ⅰ)求证:AC为⊙O的直径.
(Ⅱ)求证:AG•EF=CE•GD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长春一模)请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.
如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为
BD
中点,连接AG分别交⊙O、BD于点E、F,连接CE.
(1)求证:AG•EF=CE•GD;
(2)求证:
GF
AG
=
EF2
CE2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年海南省等4校联考理科数学试卷(解析版) 题型:解答题

如图,已知⊙O和⊙M相交于A.B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD中点,连结AG分别交⊙O.BD于点E.F连结CE。

(Ⅰ)求证:

(Ⅱ)求证: 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年辽宁省沈阳四校高三上学期12月月考理科数学试卷 题型:解答题

选修4-1:几何证明选讲

如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧的中点,连结AG分别交⊙O、BD于点E、F,连结CE.

(Ⅰ)求证:为⊙O的直径。

(Ⅱ)求证:

 

 

 

查看答案和解析>>

同步练习册答案