精英家教网 > 高中数学 > 题目详情
2.已知sin(α+β)=1,试问:tan(2α+β)+tanβ的值是否是定值?若是,求出定值,否则说明理由.

分析 利用已知条件求出α+β,利用诱导公式化简tan(2α+β),然后求解判断即可.

解答 解:是定值;
因为sin(α+β)=1,可得α+β=2kπ+$\frac{π}{2}$,k∈Z,2α+2β=4kπ+π,k∈Z,
所以tan(2α+β)+tanβ=tan[2(α+β)-β]+tanβ=-tanβ+tanβ=0.
定值为0.

点评 本题考查诱导公式的应用,三角函数的角的转化与求解是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)和圆O:x2+y2=b2.过双曲线C上一点P引圆O的两条切线,切点分别为A,B.若△PAB可为正三角形,则双曲线C的离心率e的取值范围是[$\frac{\sqrt{5}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.抛物线y=x2-x-6与x轴的交点坐标为(-2,0),(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(1,2),B(2,3),C(-2,5),证明$\overrightarrow{AB}$⊥$\overrightarrow{AC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.抛物线y2=8x的动弦AB的长为16,求弦AB的中点M到y轴的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.有下列命题:
①若直线l平行于平面α内的无数条直线,则直线l∥α:
②若直线a在平面α外.则a∥α:
③若直线a∥b,b∥α,则a∥α:
④若直线a∥b.b∥α.则a平行于平面α内的无数条直线.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知两直线方程l1:mx+2y+8=0和l2:x+my+3=0,当m为何值时,
(1)l1∥l2
(2)l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}.a1=1,an=an-1+2(n≥2).则数列前100项和等于10000.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α为第二象限角.
(1)指出$\frac{a}{2}$所在的象限;
(2)若α还满足条件|α+2|≤4,求α的取值区间;
(3)若$\frac{π}{2}$<α<β<π,求α-β的范围.

查看答案和解析>>

同步练习册答案