精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,其离心率椭圆右焦点的直线与椭圆交于两点.

1)求椭圆的方程;

2)是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.

【答案】1;(2)存在,.

【解析】

1)求出抛物线的焦点坐标可得出,再结合离心率求出的值,由此可得出椭圆的方程;

2)分直线的斜率是否存在进行分类讨论,在直线的斜率不存在时,求出两点的坐标,验证是否成立;在直线的斜率存在时,可设直线的方程为,并设点,将直线与椭圆的方程联立,并列出韦达定理,结合平面向量数量积的坐标运算得出关于的方程,解出即可.

1)由抛物线的焦点为,则知

又结合,解得,故椭圆方程为

2)若直线不存在,可得,不满足

故直线斜率必然存在,由椭圆右焦点,可设直线

记直线与椭圆的交点

,消去整理得到.

由题意可知恒成立,且有.

那么

,解得.

因此,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的导函数。

(1)证明:内存在唯一的极小值点;

(2)证明:当时,有且只有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年底,我国发明专利申请量已经连续年位居世界首位,下表是我国年至年发明专利申请量以及相关数据.

注:年份代码分别表示.

1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?

2)建立关于的回归直线方程(精确到),并预测我国发明专利申请量突破万件的年份.

参考公式:回归直线的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以(单位:度)分组的频率分布直方图如下图:

若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:

月平均用电量(度)

使用峰谷电价的户数

3

9

13

7

2

1

(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);

(2)()将“一般用户”和“大用户”的户数填入下面的列联表:

一般用户

大用户

使用峰谷电价的用户

不使用峰谷电价的用户

()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?

0.025

0.010

0.001

5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,的中点,上一点,且.

(Ⅰ)证明:平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.

1)求PX=2);

2)求事件X=4且甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,一个水斗从点A(3,-3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t秒后,水斗旋转到P点,设P的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).则下列叙述错误的是(  )

A.R=6,ω=,φ=-

B.当t∈[35,55]时,点P到x轴的距离的最大值为6

C.当t∈[10,25]时,函数y=f(t)单调递减

D.当t=20时,|PA|=6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=ax2+12axlnxaR).

1)讨论fx)的单调性;

2)当a0时,证明fxlnae2)﹣2ae为自然对数的底数).

查看答案和解析>>

同步练习册答案