【题目】设椭圆的一个顶点与抛物线的焦点重合,、分别是椭圆的左、右焦点,其离心率椭圆右焦点的直线与椭圆交于、两点.
(1)求椭圆的方程;
(2)是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.
【答案】(1);(2)存在,.
【解析】
(1)求出抛物线的焦点坐标可得出,再结合离心率求出的值,由此可得出椭圆的方程;
(2)分直线的斜率是否存在进行分类讨论,在直线的斜率不存在时,求出、两点的坐标,验证是否成立;在直线的斜率存在时,可设直线的方程为,并设点、,将直线与椭圆的方程联立,并列出韦达定理,结合平面向量数量积的坐标运算得出关于的方程,解出即可.
(1)由抛物线的焦点为,则知,
又结合,,解得,故椭圆方程为;
(2)若直线不存在,可得,,不满足;
故直线斜率必然存在,由椭圆右焦点,可设直线为,
记直线与椭圆的交点、,
由,消去整理得到.
由题意可知恒成立,且有,.
那么
则,解得.
因此,直线的方程为.
科目:高中数学 来源: 题型:
【题目】至年底,我国发明专利申请量已经连续年位居世界首位,下表是我国年至年发明专利申请量以及相关数据.
注:年份代码~分别表示~.
(1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?
(2)建立关于的回归直线方程(精确到),并预测我国发明专利申请量突破万件的年份.
参考公式:回归直线的斜率和截距的最小二乘法估计分别为,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以,,,,,(单位:度)分组的频率分布直方图如下图:
若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:
月平均用电量(度) | ||||||
使用峰谷电价的户数 | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);
(2)()将“一般用户”和“大用户”的户数填入下面的列联表:
一般用户 | 大用户 | |
使用峰谷电价的用户 | ||
不使用峰谷电价的用户 |
()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,一个水斗从点A(3,-3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t秒后,水斗旋转到P点,设P的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).则下列叙述错误的是( )
A.R=6,ω=,φ=-
B.当t∈[35,55]时,点P到x轴的距离的最大值为6
C.当t∈[10,25]时,函数y=f(t)单调递减
D.当t=20时,|PA|=6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2+(1﹣2a)x﹣lnx(a∈R).
(1)讨论f(x)的单调性;
(2)当a>0时,证明f(x)≥ln(ae2)﹣2a(e为自然对数的底数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com