精英家教网 > 高中数学 > 题目详情

【题目】如图,双曲线的中心在坐标原点O,M、N分别为双曲线虚轴的上、下端点,A是双曲线的右顶点,F是双曲线的右焦点,直线AM与FN相交于点P,若∠APF是锐角,则此双曲线的离心率的取值范围是(
A.( ,+∞)
B.(1+ ,+∞)
C.(0,
D.( ,+∞)

【答案】A
【解析】解:设双曲线的方程为 =1, 由题意可得A(a,0),F(c,0),M(0,b),N(0,﹣b),
故直线AF的方程为y+b= x,直线NF的方程为y﹣b=﹣ x,
联立方程组,解得x= ,y=
即P( ),
=( ), =( ),
∵∠APF是锐角,
= + <0,
∴b2<ac,
∴c2﹣a2<ac
∴e﹣ <1,
即e2﹣e﹣1<0,
解得e> ,e< (舍去),
故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xex|,g(x)=f2(x)+λf(x),若方程g(x)=﹣1有且仅有4个不同的实数解,则实数λ的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,F(x)=2f(x)﹣x有2个零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABC﹣A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,M,N分别是A1B1 , A1C1的中点,则BM与AN所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M是直线l:x=﹣1上的动点,点F的坐标是(1,0),过M的直线l′与l垂直,并且l′与线段MF的垂直平分线相交于点N (Ⅰ)求点N的轨迹C的方程
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),直线P′H⊥A′B,垂足为H,是否存在一个定点Q,使得|QH|为定值?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,手机已经成为人们日常生活中不可缺少的产品,手机的功能也日趋完善,已延伸到了各个领域,如拍照,聊天,阅读,缴费,购物,理财,娱乐,办公等等,手机的价格差距也很大,为分析人们购买手机的消费情况,现对某小区随机抽取了200人进行手机价格的调查,统计如下:

年龄 价格

5000元及以上

3000元﹣4999元

1000元﹣2999元

1000元以下

45岁及以下

12

28

66

4

45岁以上

3

17

46

24

(Ⅰ)完成关于人们使用手机的价格和年龄的2×2列联表,再判断能否在犯错误的概率不超过0.025的前提下,认为人们使用手机的价格和年龄有关?
(Ⅱ)从样本中手机价格在5000元及以上的人群中选择3人调查其收入状况,设3人中年龄在45岁及以下的人数为随机变量X,求随机变量X的分布列及数学期望.
附K2=

P(K2≥k)

0.05

0.025

0.010

0.001

k

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18﹣36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:

微信群数量

频数

频率

0至5个

0

0

6至10个

30

0.3

11至15个

30

0.3

16至20个

a

c

20个以上

5

b

合计

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x)=f( )且当x∈[ ,1]时,f(x)=lnx,若当x∈[ ]时,函数g(x)=f(x)﹣ax与x轴有交点,则实数a的取值范围是(
A.[﹣ ,0]
B.[﹣πlnπ,0]
C.[﹣ ]
D.[﹣ ,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(x+ )+sinx.
(I)利用“五点法”,列表并画出f(x)在[﹣ ]上的图象;
(II)a,b,c分别是△ABC中角A,B,C的对边.若a= ,f(A)= ,b=1,求△ABC的面积.

x

f(x)

查看答案和解析>>

同步练习册答案