精英家教网 > 高中数学 > 题目详情
6.定义:记min{x1,x2,…,xn}为x1,x2,…,xn这n个实数中的最小值,记max{x1,x2,…,xn}为x1,x2,…,xn这n个实数中的最大值,例如:min{3,-2,0}=-2.
(1)求证:min{x2+y2,xy}=xy;
(2)已知f(x)=max{|x|,2x+3}(x∈R),求f(x)的最小值;
(3)若H=max{$\frac{1}{{\sqrt{x}}}$,$\frac{x+y}{{\sqrt{xy}}}$,$\frac{1}{{\sqrt{y}}}}$}(x,y∈R+),求H的最小值.

分析 (1)分类讨论,利用新定义,即可证明结论;
(2)写出分段函数,即可求f(x)的最小值;
(3)分类讨论,求出H=max{$\frac{1}{{\sqrt{x}}}$,$\frac{x+y}{{\sqrt{xy}}}$,$\frac{1}{{\sqrt{y}}}}$}(x,y∈R+),即可求H的最小值.

解答 (1)证明:当xy≤0时,x2+y2≥xy,则min{x2+y2,xy}=xy,
当xy>0时,由x2+y2≥2|xy|>xy,则min{x2+y2,xy}=xy,
综上所述min{x2+y2,xy}=xy;
(2)解:f(x)=max{|x|,2x+3}=$\left\{\begin{array}{l}{|x|,x<-1}\\{2x+3,x≥-1}\end{array}\right.$,
∴当x=-1时,f(x)的有最小值,即为1;
(3)解:x=y=$\frac{1}{4}$时,H=max{$\frac{1}{{\sqrt{x}}}$,$\frac{x+y}{{\sqrt{xy}}}$,$\frac{1}{{\sqrt{y}}}}$}={2},H的最小值为2.
不失一般性,设x>y>0,当x>y>$\frac{1}{4}$时,
∵x,y∈R+
∴$\frac{x+y}{\sqrt{xy}}$≥$\frac{2\sqrt{xy}}{\sqrt{xy}}$=2,当且仅当x=y时取等号,
∵2>$\frac{1}{\sqrt{y}}$>$\frac{1}{\sqrt{x}}$,
∴H=max{$\frac{1}{{\sqrt{x}}}$,$\frac{x+y}{{\sqrt{xy}}}$,$\frac{1}{{\sqrt{y}}}}$}={2},H的最小值为2.
当x>$\frac{1}{4}$>y时,H=max{$\frac{1}{{\sqrt{x}}}$,$\frac{x+y}{{\sqrt{xy}}}$,$\frac{1}{{\sqrt{y}}}}$}={$\frac{x+y}{{\sqrt{xy}}}$},H的最小值不存在.
当$\frac{1}{4}$>x>y时,H=max{$\frac{1}{{\sqrt{x}}}$,$\frac{x+y}{{\sqrt{xy}}}$,$\frac{1}{{\sqrt{y}}}}$}={$\frac{1}{{\sqrt{y}}}}$},H的最小值不存在.
综上所述,x=y=$\frac{1}{4}$时,H的最小值为2.

点评 本题考查新定义,考查分类讨论的数学思想,考查学生分析解决问题的能力,正确理解新定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知直线:x-y+m=0与圆C:x2+y2=4相交于A,B两点,且弦AB的长为2$\sqrt{3}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=2x-y的最小值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在三棱锥A-BCD中,O、E分别为BD、BC中点,CA=CB=CD=BD=4,AB=AD=2$\sqrt{2}$
(1)求证:AO⊥面BCD
(2)求异面直线AB与CD所成角的余弦值
(3)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.
(Ⅰ)证明:|$\frac{1}{3}$a+$\frac{1}{6}$b|<$\frac{1}{4}$;
(Ⅱ)比较|1-4ab|与2|a-b|的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l1:y=2x,l2:y=-2x,过点M(-2,0)的直线l分别与直线l1,l2交于A,B,其中点A在第三象限,点B在第二象限,点N(1,0);
(1)若△NAB的面积为16,求直线l的方程;
(2)直线AN交l2于点P,直线BN交l1于点Q,若直线l、PQ的斜率均存在,分别设为k1,k2,判断$\frac{k_1}{k_2}$是否为定值?若为定值,求出该定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|sinx|•cosx,则下列说法正确的是(  )
A.f(x)的图象关于直线x=$\frac{π}{2}$对称B.f(x)的周期为π
C.若|f(x1)|=|f(x2)|,则x1=x2+2kπ(k∈Z)D.f(x)在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.满足{1}?A⊆{1,2,3,4}的集合A的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C1:y=ax2上点P处的切线为l1,曲线C2:y=bx3上点A(1,b)处的切线为l2,且l1⊥l2,垂足M(2,2),求a、b的值.

查看答案和解析>>

同步练习册答案