【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别无关”
B. 有99%以上的把握认为“爱好该项运动与性别有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”
科目:高中数学 来源: 题型:
【题目】已知二次函数.
(1)若方程两个根之和为4,两根之积为3,且过点(2,-1).求的解集;
(2)若关于的不等式的解集为.
(ⅰ)求解关于的不等式
(ⅱ)设函数,求函数的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有5个小球,小球上分别写有0,1,2,3,4的数字,小球除数字外其它完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:①若取出的两个小球上数字之积大于8,则奖励飞机玩具一个;②若取出的两个小球上数字之积在区间上,则奖励汽车玩具一个;③若取出的两个小球上数字之积小于2,则奖励饮料一瓶.
(1)求每对亲子获得飞机玩具的概率;
(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:
大棚面积(亩) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利润(万元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且与有很强的线性相关关系.
(Ⅰ)求关于的线性回归方程;
(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;
(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?
参考数据: , .
参考公式: , .
【答案】(Ⅰ).(Ⅱ)大约为11.442万元.(Ⅲ)种植彩椒比较好.
【解析】【试题分析】(I)利用回归直线方程计算公式计算出回归直线方程.(II)将代入求得当年利润的估计值.(III)通过计算平均数和方差比较种植哪种蔬菜好.
【试题解析】
(Ⅰ), , ,
,
,
那么回归方程为: .
(Ⅱ)将代入方程得
,即小明家的“超级大棚”当年的利润大约为11.442万元.
(Ⅲ)近5年来,无丝豆亩平均利润的平均数为,
方差 .
彩椒亩平均利润的平均数为,
方差为 .
因为, ,∴种植彩椒比较好.
【题型】解答题
【结束】
19
【题目】如图,四棱锥中, 为等边三角形,且平面平面, , , .
(Ⅰ)证明: ;
(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com