精英家教网 > 高中数学 > 题目详情

【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正确结论是(

A. 99%以上的把握认为“爱好该项运动与性别无关

B. 99%以上的把握认为“爱好该项运动与性别有关”

C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”

D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”

【答案】B

【解析】

,结合临界值表,即可直接得出结果.

,可得有99%以上的把握认为“爱好该项运动与性别有关”.故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)写出函数的解析式;

(2)若直线与曲线有三个不同的交点,求的取值范围;

(3)若直线 与曲线内有交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体中,平面.

(Ⅰ)证明:平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1)若方程两个根之和为4,两根之积为3,且过点(2,1).的解集;

2)若关于的不等式的解集为.

(ⅰ)求解关于的不等式

(ⅱ)设函数,求函数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断并证明的奇偶性;

2)用单调性的定义证明函数在其定义域上是增函数;

3)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有5个小球,小球上分别写有0,1,2,3,4的数字,小球除数字外其它完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:①若取出的两个小球上数字之积大于8,则奖励飞机玩具一个;②若取出的两个小球上数字之积在区间上,则奖励汽车玩具一个;③若取出的两个小球上数字之积小于2,则奖励饮料一瓶.

(1)求每对亲子获得飞机玩具的概率;

(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”.为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:

大棚面积(亩)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利润(万元)

6

7

7.4

8.1

8.9

9.6

11.1

由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且有很强的线性相关关系.

(Ⅰ)求关于的线性回归方程;

(Ⅱ)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;

(Ⅲ)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?

参考数据: .

参考公式: .

【答案】(Ⅰ).(Ⅱ)大约为11.442万元.(Ⅲ)种植彩椒比较好.

【解析】试题分析】(I)利用回归直线方程计算公式计算出回归直线方程.(II)代入求得当年利润的估计值.(III)通过计算平均数和方差比较种植哪种蔬菜好.

试题解析】

(Ⅰ)

那么回归方程为: .

(Ⅱ)将代入方程得

,即小明家的“超级大棚”当年的利润大约为11.442万元.

(Ⅲ)近5年来,无丝豆亩平均利润的平均数为

方差 .

彩椒亩平均利润的平均数为

方差为 .

因为 ,∴种植彩椒比较好.

型】解答
束】
19

【题目】如图,四棱锥中, 为等边三角形,且平面平面.

(Ⅰ)证明:

(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的值为4,则判断框中应填入的条件是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1时,求函数的极值点;

2时,证明:上恒成立

查看答案和解析>>

同步练习册答案