精英家教网 > 高中数学 > 题目详情

【题目】甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为,再由乙猜甲刚才想的数字,把乙猜的数字记为,且.若,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为__________

【答案】

【解析】试验发生的所有事件是从0,1,2,3,4,5,6,7,8,9十个数中任取两个共有10×10种不同的结果,

的情况有0,0;1,1;2,2;3,3;4,4;5,5;6,6;7,7;8,8;9,9;

0,1;1,0;1,2;2,1;2,3;3,2;3,4;4,3;4,5;5,4;5,6;6,5;6,7;7,6;7,8;8,7;8,9;9,828种情况,

甲乙出现的结果共有10×10=100,

∴他们心有灵犀的概率为.

故答案为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过点作直线分别交轴的正半轴于两点.

(Ⅰ)当取最小值时,求出最小值及直线的方程;

(Ⅱ)当取最小值时,求出最小值及直线的方程;

(Ⅲ)当取最小值时,求出最小值及直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 轴的交点是椭圆 的一个焦点.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,是否存在使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分图象如图所示.

(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x﹣ )﹣f(x+ )的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下2-组随机数:

907 966 191 925 271 932 812 458

569 683 431 257 393 027 556 488

730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C经过A(0,1),B(3,4),C(6,1)三点.
(1)求圆C的方程;
(2)若圆C与直线x﹣y+a=0交于A,B两点,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知.

(Ⅰ)解不等式

(Ⅱ)若关于的不等式对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有__________种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆过点 .

求:(1)周长最小的圆的方程;

2)圆心在直线上的圆的方程.

查看答案和解析>>

同步练习册答案