精英家教网 > 高中数学 > 题目详情

【题目】为了了解某校九年级1 600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据直方图的数据,下列结论错误的是(  )

A. 该校九年级学生1分钟仰卧起坐的次数的中位数为26.25

B. 该校九年级学生1分钟仰卧起坐的次数的众数为27.5

C. 该校九年级学生1分钟仰卧起坐的次数超过30次的约有320人

D. 该校九年级学生1分钟仰卧起坐的次数少于20次的约有32人

【答案】D

【解析】试题解析:频率分布直方图中,中位数是频率为的分界点的横坐标,由频率分布直方图可知前组的频率和为,因此中位数出现在第组设中位数为,则,所以A正确;众数是指样本中出现频率最高的数,在频率分布直方图中通常取纵坐标最高的一组区间的中点,所以众数为,所以B正确;仰卧起坐次数超过的频率为,所以频数为人,所以C正确;仰卧起坐的次数少于次的人数约有,所以D错误,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个四棱锥的三视图如图所示,关于这个四棱锥,下列说法正确的是( )

A. 最长的棱长为

B. 该四棱锥的体积为

C. 侧面四个三角形都是直角三角形

D. 侧面三角形中有且仅有一个等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C: ,过点的直线l的参数方程为: (t为参数),直线l与曲线C分别交于MN两点

(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;

(Ⅱ)若| PM || MN || PN |成等比数列,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xy之间的几组数据如下表:

x

1

2

3

4

5

6

y

0

2

1

3

3

4

假设根据上表数据所得的线性回归方程为x.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为ybxa′,则以下结论正确的是(  )

A. >b′,>a B. >b′,<a

C. <b′,>a D. <b′,<a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数)的图象为 关于点的对称的图象为 对应的函数为

(Ⅰ)求函数的解析式,并确定其定义域;

(Ⅱ)若直线只有一个交点,求的值,并求出交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设方程2xx+2=0和方程log2xx+2=0的根分别为pq,函数f(x)=(xp)·(xq)+2,则(  )

A. f(2)=f(0)<f(3) B. f(0)<f(2)<f(3)

C. f(3)<f(0)=f(2) D. f(0)<f(3)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”期间,某淘宝店主对其商品的上架时间分钟和销售量的关系作了统计,得到如下数据:

经计算: .

1)该店主通过作散点图,发现上架时间与销售量线性相关,请你帮助店主求出上架时间与销售量的线性回归方程(保留三位小数),并预测商品上架1000分钟时的销售量;

(2)从这11组数据中任选2组,设的数据组数为的分布列与数学期望.

附:线性回归方程公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物.

(1)求这4个人中恰有2人去淘宝网购物的概率;

(2)求这4个人中去淘宝网购物的人数大于去京东商城购物的人数的概率:

(3)用X,Y分别表示这4个人中去淘宝网购物的人数和去京东商城购物的人数,记,求随机变量的分布列与数学期望.

查看答案和解析>>

同步练习册答案