分析 (1)通过分类讨论,化简不等式求出解集,利用已知条件,求解a,b.
(2)由(1)知a=1,b=2,求出绝对值的最值,得到m2-3m+5≤3,然后求解实数m的最大值.
解答 解:(1)若x$≤-\frac{1}{2}$,原不等式可化为-2x-1-3x+2≤5,解得x≥-$\frac{4}{5}$,即-$\frac{4}{5}$$≤x≤-\frac{1}{2}$;
若-$\frac{1}{2}<x<\frac{2}{3}$,原不等式可化为2x+1-3x+2≤5,解得x≥-2,即-$\frac{1}{2}<x<\frac{2}{3}$;
若x≥$\frac{2}{3}$,原不等式可化为2x+1+3x-2≤5,解得x≤$\frac{6}{5}$,即$\frac{2}{3}≤x≤\frac{6}{5}$
综上所述,不等式|2x+1|+|3x-2|≤5的解集为[-$\frac{4}{5}$,$\frac{6}{5}$],所以a=1,b=2.
(2)由(1)知a=1,b=2,所以|x-a|+|x+b|=|x-1|+|x+2|≥|x-1-x-2|=3,
故m2-3m≤3,m2-3m-3≤0,所以$\frac{3-\sqrt{21}}{2}$≤m≤$\frac{3+\sqrt{21}}{2}$,即实数m的最大值为$\frac{3+\sqrt{21}}{2}$.
点评 本题考查函数恒成立,绝对值不等式的解法,考查分类讨论思想的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{17}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | $\frac{21}{2}$ | C. | 6 | D. | 与b值有关 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com