13£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin£¨¦È-$\frac{¦Ð}{3}$£©
£¨1£©½«C1µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬C2µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôC1ÓëC2½»ÓÚÁ½µãA¡¢B£¬µãP£¨x£¬y£©ÊÇÏ߶ÎABÉϵĶ¯µã£¬Çó3x-yµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌÖÐÏûÈ¥²ÎÊý£¬ÄÜÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£»ÀûÓÃÕýÏÒº¯Êý¼Ó·¨¶¨ÀíºÍÇúÏßC2µÄ¼«×ø±ê·½³ÌÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©°ÑÇúÏßC1µÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$´úÈë$£¨x+\sqrt{3}£©^{2}+£¨y-1£©^{2}$=4£¬ÄÜÇó³öA¡¢B£¬ÓÉ´ËÄÜÇó³ö3x-yµÄÈ¡Öµ·¶Î§£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊý£¬µÃÇúÏßC1µÄÆÕͨ·½³ÌΪ4x-3y-4$\sqrt{3}$+3=0£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin£¨¦È-$\frac{¦Ð}{3}$£©£¬
¡à${¦Ñ}^{2}=2¦Ñsin¦È-2\sqrt{3}cos¦È$£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+${y}^{2}+2\sqrt{3}x-2y$=0£¬
¼´$£¨x+\sqrt{3}£©^{2}+£¨y-1£©^{2}$=4£®
£¨2£©°ÑÇúÏßC1µÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$´úÈë$£¨x+\sqrt{3}£©^{2}+£¨y-1£©^{2}$=4£¬
µÃt2=4£¬½âµÃt=2»òt=-2£¬
¡àA£¨-$\sqrt{3}$+$\frac{6}{5}$£¬1+$\frac{8}{5}$£©£¬B£¨-$\sqrt{3}$-$\frac{6}{5}$£¬1-$\frac{8}{5}$£©£¬
µ±PÓëAÖغÏʱ£¬3x-y=-3$\sqrt{3}$+$\frac{18}{5}$-1-$\frac{8}{5}$=1-3$\sqrt{3}$£¬
µ±PÓëBÖغÏʱ£¬3x-y=-3$\sqrt{3}-\frac{18}{5}$-1+$\frac{8}{5}$=-3-3$\sqrt{3}$£¬
¡à3x-yµÄÈ¡Öµ·¶Î§ÊÇ[-3-3$\sqrt{3}$£¬1-3$\sqrt{3}$]£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢ÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²é´úÊýʽµÄÈ¡Öµ·¶Î§µÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⼫×ø±êºÍÖ±½Ç×ø±ê»¥»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒa2=8£¬S4=40£®ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬ÇÒTn-2bn+3=0£¬n¡ÊN*£®
£¨¢ñ£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©Éècn=$\left\{\begin{array}{l}{{a}_{n}£¬nΪÆæÊý}\\{{b}_{n}£¬nΪżÊý}\end{array}\right.$£¬ÇóÊýÁÐ{cn}µÄÇ°2nÏîºÍP2n£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®º¯Êýy=$\frac{\sqrt{4-{x}^{2}}}{|2+x|-2}$ÊÇ£¨¡¡¡¡£©
A£®Å¼º¯ÊýB£®Æ溯Êý
C£®¼ÈÊÇÆ溯ÊýÓÖÊÇżº¯ÊýD£®¼È²»ÊÇÆ溯ÊýÒ²²»ÊÇżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁк¯ÊýÖУ¬Óëy=x-1Ϊͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=$\sqrt{{{£¨x-1£©}^2}}$B£®y=$\root{3}{{{{£¨x-1£©}^3}}}$C£®y=$\frac{{{x^2}-1}}{x+1}$D£®$y={£¨\sqrt{x-1}£©^2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔÚ¼¸ºÎÌå¢ÙԲ׶£»¢ÚÕý·½Ì壻¢ÛÔ²Öù£»¢ÜÇò£»¢ÝÕýËÄÃæÌåÖУ¬ÈýÊÓͼÍêÈ«Ò»ÑùµÄÊǢڢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÎÞÇîÊýÁÐ{an}Âú×ã${a_i}¡Ê{N^*}$£¬ÇÒ${a_i}¡Ü{a_{i+1}}£¨i¡Ê{N^*}£©$£¬¶ÔÓÚÊýÁÐ{an}£¬¼Ç${b_k}=min\left\{{n|{a_n}¡Ýk}\right\}£¨k¡Ê{N^*}£©$£¬ÆäÖÐmin{n|an¡Ýk}±íʾ¼¯ºÏ{n|an¡Ýk}ÖеÄ×îСÊý
£¨1£©ÈôÊýÁÐ{an}£º1£¬3£¬5£¬7£¬¡­£¬Çëд³ö${b_1}£¬{b_2}£¬{b_{a_2}}$£»
£¨2£©ÒÑÖªTn=${a_1}+{a_2}+¡­+{a_n}+{b_1}+{b_2}+¡­+{b_{a_n}}£¬ÇóÖ¤{T_n}=£¨n+1£©{a_n}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®cos1740¡ã=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýf£¨x£©=ln$\frac{x}{x-1}$µÄ¶¨ÒåÓòÊÇ£¨-¡Þ£¬0£©¡È£¨1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬a1=1£¬¹«±ÈΪq£»µÈ²îÊýÁÐ{bn}ÖУ¬b1=3£¬ÇÒ{bn}µÄÇ°nÏîºÍΪSn£¬a3+S3=27£¬q=$\frac{S_2}{a_2}$£®
£¨¢ñ£©Çó{an}Óë{bn}µÄͨÏʽ£»
£¨¢ò£©ÉèÊýÁÐ{cn}Âú×ãcn=$\frac{3}{{2{S_n}}}$£¬Çó{cn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸