【题目】如图,在四棱锥PABCD中,PA⊥底面ABCD,AD∥BC,AB=AC=AD=3,PA=BC=4.
(1)求异面直线PB与CD所成角的余弦值;
(2)求平面PAD与平面PBC所成锐二面角的余弦值.
【答案】(1).(2).
【解析】
(1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.
(2)先求得平面PBC的一个法向量,易知平面PAD的一个法向量,再利用面面角的向量方法求解.
(1) 设BC的中点为E,由AB=AC,可知AE⊥BC,
故分别以AE,AD,AP所在的直线为x,y,z轴建立空间直角坐标系
则A(0,0,0),P(0,0,4),D(0,3,0),B(,-2,0),C(,2,0).
设θ为两直线所成的角,
由=(,-2,-4),=(-,1,0),
得cosθ==.
(2) 设=(x,y,z)为平面PBC的法向量,
=(,-2,-4),=(,2,-4),
·=0,·=0,
即
取平面PBC的一个法向量=(4,0,),
平面PAD的一个法向量为=(1,0,0).
设α为两个平面所成的锐二面角的平面角,则cosα==.
所以平面PAD与平面PBC所成锐二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】设函数,,其中恒不为0.
(1)设,求函数在x=1处的切线方程;
(2)若是函数与的公共极值点,求证:存在且唯一;
(3)设,是否存在实数a,b,使得在(0,)上恒成立?若存在,请求出实数a,b满足的条件;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在算法中“”和“”分别表示取商和取余数.为了验证三位数卡普雷卡尔“数字黑洞”(即输入一个无重复数字的三位数,经过如图的有限次的重排求差计算,结果都为495).小明输入,则输出的( )
A.3B.4C.5D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{}的首项a1=2,前n项和为,且数列{}是以为公差的等差数列·
(1)求数列{}的通项公式;
(2)设,,数列{}的前n项和为,
①求证:数列{}为等比数列,
②若存在整数m,n(m>n>1),使得,其中为常数,且-2,求的所有可能值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,.
(1)当时,若对任意均有成立,求实数的取值范围;
(2)设直线与曲线和曲线相切,切点分别为,,其中.
①求证:;
②当时,关于的不等式恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com