精英家教网 > 高中数学 > 题目详情

下列命题:
①函数y=sin(2x+数学公式)的单调减区间为[kπ+数学公式,kπ+数学公式],k∈Z;
②函数y=数学公式cos2x-sin2x图象的一个对称中心为(数学公式,0);
③函数y=sin(数学公式x-数学公式)在区间[-数学公式数学公式]上的值域为[-数学公式数学公式];
④函数y=cosx的图象可由函数y=sin(x+数学公式)的图象向右平移数学公式个单位得到;
⑤若方程sin(2x+数学公式)-a=0在区间[0,数学公式]上有两个不同的实数解x1,x2,则x1+x2=数学公式
其中正确命题的序号为 ________.

①②⑤
分析:①令+2kπ可求
②利用两角和的余弦公式化简可得y=,令2x+,求出函数的对称中心
③由可得,结合正弦函数的图象可求函数的值域
④根据函数的图象平移法则:左加右减的平移法则可得
⑤根据正弦函数的图象结合函数的对称性可得.
解答:①令+2kπ,解得+kπ,k∈Z,,故①正确
②y=,令2x+,解得x=+kπ,
k=0时函数的一个对称中心(,0)②正确
③y=,当-,结合正弦函数的图象可得-≤y≤1,③错误
④由函数y=sin(x+)的图象向右平移个单位得到y=sinx的图象,故④错误
⑤令y=sin(2x+),当x时,2x+,若使方程有两解,则两解关于x=对称,
则x1+x2=,故⑤正确
故答案为:①②⑤
点评:本题综合考查了三角函数y=Asin(ωx+∅)(A>0,ω>0)的性质:函数的单调区间的求解,函数的对称中心的求解,函数在闭区间上的最值的求解及函数图象的平移,还用到了两角和的余弦公式,而解决本题的关键是要熟练掌握并能灵活运用三角函数的图象.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin(
2
-2x)
是偶函数;
②函数y=sin(x+
π
4
)
在闭区间[-
π
2
π
2
]
上是增函数;
③直线x=
π
8
是函数y=sin(2x+
4
)
图象的一条对称轴;
④若cosx=-
1
3
,x∈(0,2π)
,则x=arcos(-
1
3
)或π+arcos(-
1
3

其中正确的命题的序号是:
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=lg
x2+1|x|
(x≠0,x∈R)
有下列命题:
①函数y=f(x)的图象关于y轴对称;
②在区间(-∞,0)上,函数y=f(x)是减函数;
③函数f(x)的最小值为lg2;
④在区间(1,∞)上,函数f(x)是增函数.
其中正确命题序号为
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
①函数y=sin(-2x+
π
3
)
的单调增区间是[-kπ-
π
12
,-kπ+
12
](k∈Z)

②要得到函数y=cos(x-
π
6
)
的图象,需把函数y=sinx的图象上所有点向左平行移动
π
3
个单位长度.
③已知函数f(x)=2cos2x-2acosx+3,当a≤-2时,函数f(x)的最小值为g(a)=5+2a.
④y=sinwx(w>0)在[0,1]上至少出现了100次最小值,则w≥
399
2
π

其中正确命题的序号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=f(x-2)与函数y=f(2-x)的图象关于x=2对称;
②函数y=f(x)导函数为y=f′(x),若f′(x0)=0,则f(x0)必为函数y=f(x)的极值;
③函数y=sinx在一象限单调递增;
④y=tanx在其定义域内为单调增函数.
其中正确的命题序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=sin2x-cos2x有下列命题:
①函数y=f(x)的周期为π;                
②直线x=
π
4
是y=f(x)图象的一条对称轴;
点(
π
8
,0)
是y=f(x)图象的一个对称中心;
(-
π
8
8
)
是函数y=f(x)的一个单调递减区间.
其中真命题的序号是
①③
①③

查看答案和解析>>

同步练习册答案