精英家教网 > 高中数学 > 题目详情
1.已知a>0且a≠1,设命题p:函数f(x)=2-|x|-a在x∈R内有两个零点,命题q:不等式|x-2|-|x+3|-4a2+12a-10<0对一切实数x∈R恒成立,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.

分析 分别求出p,q成立的a的范围,根据“p∨q”为真,且“p∧q”为假,则p,q一真一假,得到关于a的不等式组,解出即可.

解答 解:∵命题p:函数f(x)=2-|x|-a在x∈R内有两个零点,
即2-|x|=a在x∈R内有两个交点,
画出函数y=2-|x|的图象,如图示:

由图象得:0<a<1;
命题q:若不等式|x-2|-|x+3|-4a2+12a-10<0对一切实数x∈R恒成立,
由于|x-2|-|x+3|表示数轴上的x对应点到2对应点的距离减去它到-3对应点的距离,
故它的最大值等于5,故有5-4a2+12a-10<0对一切实数x∈R恒成立即可,
解得:a>$\frac{5}{2}$或0<a<$\frac{1}{2}$,
如果“p∨q”为真,且“p∧q”为假,则p,q一真一假,
p真q假时:$\left\{\begin{array}{l}{0<a<1}\\{\frac{1}{2}≤a≤\frac{5}{2}}\end{array}\right.$,解得:$\frac{1}{2}$≤a<1,
p假q真时:$\left\{\begin{array}{l}{a>1}\\{a>\frac{5}{2}或0<a<\frac{1}{2}}\end{array}\right.$,解得:a>$\frac{5}{2}$,
故a∈[$\frac{1}{2}$,1)∪($\frac{5}{2}$,+∞).

点评 本题考查了函数恒成立以及函数的零点问题,考查复合命题的判断,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.下列命题中正确的有(  )个.
①若两条直线和第三条直线所成的角相等,则这两条直线互相平行.
②空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
③四面体的四个面中,最多有四个直角三角形.
④若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的无数条直线.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果实数x,y满足约束条件$\left\{\begin{array}{l}{x+y+1≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,那么目标函数z=2x-y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2x-2-x,定义域为R;函数g(x)=2x+1-22x,定义域为[-1,1].
(Ⅰ)判断函数f(x)的单调性(不必证明)并证明其奇偶性;
(Ⅱ)若方程g(x)=t有解,求实数t的取值范围;
(Ⅲ) 若不等式f(g(x))+f(3am-m2-1)≤0对一切x∈[-1,1],a∈[-2,2]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式(x+5)(3-2x)≥6的解集是(  )
A.{x|-$\frac{9}{2}$≤x≤1}B.{x|-1≤x≤$\frac{9}{2}$}C.{x|x≤-$\frac{9}{2}$或x≥1}D.{x|x≤-1或x≥$\frac{9}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知对k∈R,直线y-kx-1=0与椭圆$\frac{x^2}{2}+\frac{y^2}{m}=1$恒有公共点,则实数m的取值范围是(  )
A.(1,2]B.[1,2)C.[1,2)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a,b∈R,那么“a2>b2”是“a>|b|”的(  )
A.充分非必要条件B.必要非充分条件
C.充分必要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{x-1},x<0}\\{(x-1)^{2},x≥0}\end{array}\right.$,若直线y=m与函数f(x)的图象有三个不同的交点,则实数m的取值范围(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知关于x的不等式组$\left\{\begin{array}{l}{|2x-1|>3}\\{2{x}^{2}+(2a+5)x+5a<0}\end{array}\right.$
(1)解集中有且只有一个整数为-3,求a的取值集合.
(2)写出此不等式组的解集.

查看答案和解析>>

同步练习册答案