分析 分别求出p,q成立的a的范围,根据“p∨q”为真,且“p∧q”为假,则p,q一真一假,得到关于a的不等式组,解出即可.
解答 解:∵命题p:函数f(x)=2-|x|-a在x∈R内有两个零点,
即2-|x|=a在x∈R内有两个交点,
画出函数y=2-|x|的图象,如图示:
,
由图象得:0<a<1;
命题q:若不等式|x-2|-|x+3|-4a2+12a-10<0对一切实数x∈R恒成立,
由于|x-2|-|x+3|表示数轴上的x对应点到2对应点的距离减去它到-3对应点的距离,
故它的最大值等于5,故有5-4a2+12a-10<0对一切实数x∈R恒成立即可,
解得:a>$\frac{5}{2}$或0<a<$\frac{1}{2}$,
如果“p∨q”为真,且“p∧q”为假,则p,q一真一假,
p真q假时:$\left\{\begin{array}{l}{0<a<1}\\{\frac{1}{2}≤a≤\frac{5}{2}}\end{array}\right.$,解得:$\frac{1}{2}$≤a<1,
p假q真时:$\left\{\begin{array}{l}{a>1}\\{a>\frac{5}{2}或0<a<\frac{1}{2}}\end{array}\right.$,解得:a>$\frac{5}{2}$,
故a∈[$\frac{1}{2}$,1)∪($\frac{5}{2}$,+∞).
点评 本题考查了函数恒成立以及函数的零点问题,考查复合命题的判断,是一道中档题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-$\frac{9}{2}$≤x≤1} | B. | {x|-1≤x≤$\frac{9}{2}$} | C. | {x|x≤-$\frac{9}{2}$或x≥1} | D. | {x|x≤-1或x≥$\frac{9}{2}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,2] | B. | [1,2) | C. | [1,2)∪(2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com