精英家教网 > 高中数学 > 题目详情
(2010•台州二模)如图,在长方体ABCD-A1B1C1D1中,AB=10,AD=5,AA1=4.分别过BC、A1D1的两个平行截面将长方体分成    三部分,其体积分别记为V1=VAEA1-DFD1,V2=VEBE1A1-FCF1D1 ,V3=VB1E1B- C1F1C  .若V1:V2:V3=1:3:1,则截面A1EFD1的面积为(  )
分析:先由三部分几何体均为棱柱,且有等高的特点,将体积之比转化为底面积之比,再由底面图形具有等高的特点将面积之比转化为边长之比,最后求出线段A1E的长即可计算矩形面积
解答:解:∵将长方体分成的三部分均为棱柱,且高均为5,故V1:V2:V3=S△AA1E:SA1E1BE:S△AA1E=1:3:1
∵△AA1E与四边形A1E1BE有等高4,故AE:EB=2:3,∵AB=10,∴AE=4,∴A1E=
AE2+AA12
=
16+16
=4
2

∴截面A1EFD1的面积为EF×A1E=5×4
2
=20
2

故选C
点评:本题考察了棱柱的体积公式的用法,将空间问题不断转化为平面问题的思想方法,转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•台州二模)已知函数f(x)=x|x-a|+x-2在R上恒为增函数,则a的取值范围是
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)已知等差数列{an}中,a1+a5+a9=
π
4
,则sin(a4+a6)=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为1的圆,且这个几何体是球体的一部分,则这个几何体的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)若P0(x0,y0)在椭圆
x2
a2
+
y2
b2
=1
外,则过P0作椭圆的两条切线的切点为P1,P2,则切点弦P1P2所在直线方程是
x0x
a2
+
y0y
b2
=1
.那么对于双曲线则有如下命题:若P0(x0,y0)在双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
外,则过P0作双曲线的两条切线的切点为P1,P2,则切点弦P1P2的所在直线方程是
x0x
a2
-
y0y
b2
=1
x0x
a2
-
y0y
b2
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)“x>2且y>2”是“x+y>4”的(  )

查看答案和解析>>

同步练习册答案