精英家教网 > 高中数学 > 题目详情

【题目】从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于之间,将测量结果按如下方式分成八组:第一组,第二组第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人。

)求第七组的频率;

)估计该校的名男生的身高的中位数以及身高在以上(含)的人数;

)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,事件,求

【答案】;(;(.

【解析】

试题分析:根据频率=频数样本容量,及频率直方图的小矩形框的面积为所在的频率,分别求得第六组合第七组的频率;(中位数是将数据从小到大排处于中间位置的数,在频率分布直方图中为面积两边一样的数据,列出方程易得中位数,身高在以上的样本频率为代表总体概率,进而求得所求人数;(分别根据题意得到第六组和第八组的人数,按列举法得所求概率.

试题解析:)第六组的频率为 1分

第七组的频率为 (3分)

)易知中位数位于之间设为,则有

身高在180cm以上(含180cm)的人数为 (8分)

)设第六组四人分别为

第八组二人分别为,则从六人中任取两名共有15种不同取法

,共有7种情况,有0种

(13分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设关于某产品的明星代言费x(百万元)和其销售额y(百万元),有如表的统计表格:

i

1

2

3

4

5

合计

xi(百万元)

1.26

1.44

1.59

1.71

1.82

7.82

wi(百万元)

2.00

2.99

4.02

5.00

6.03

20.04

yi(百万元)

3.20

4.80

6.50

7.50

8.00

30.00

=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi2=0.20, (wi2=10.14

其中
(1)在坐标系中,作出销售额y关于广告费x的回归方程的散点图,根据散点图指出:y=a+blnx,y=c+dx3哪一个适合作销售额y关于明星代言费x的回归类方程(不需要说明理由);

(2)已知这种产品的纯收益z(百万元)与x,y有如下关系:x=0.2y﹣0.726x(x∈[1.00,2.00]),试写出z=f(x)的函数关系式,试估计当x取何值时,纯收益z取最大值?(以上计算过程中的数据统一保留到小数点第2位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品在天内每克的销售价格()与时间的函数图象是如图所示的两条线段(不包含两点);该商品在 30 天内日销售量()与时间()之间的函数关系如下表所示:

5

15

20

30

销售量

35

25

20

10

(1)根据提供的图象,写出该商品每克销售的价格()与时间的函数关系式;

(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;

(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.

(注:日销售金额=每克的销售价格×日销售量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点.

与圆相切,求的方程;

与圆相交于两点,求的面积的最大值,并求此时直线的方程.(其中点C是圆C的圆心)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=4x2-2(t-2)x-2t2-t+1在区间[-1,1]内至少存在一个值m,使得f(m)>0,则实数t的取值范围( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(-1,0),8(0,3),圆心C在第一象限,线段AB的垂直平分线交圆C 于点D,E,DE =2

(1)求直线DE的方程;

(2)求圆C的方程;

(3)过点(0,4)作圆C的切线,求切线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们知道: ,已知数列 则数列的通项公式__________

查看答案和解析>>

同步练习册答案