精英家教网 > 高中数学 > 题目详情
8.已知命题p:$\frac{1}{a}$>$\frac{1}{4}$,命题q:?x∈R,ax2+1>0,则p成立是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 命题p:$\frac{1}{a}$>$\frac{1}{4}$,解得0<a<4.命题q:?x∈R,ax2+1>0,则a=0,或$\left\{\begin{array}{l}{a>0}\\{△=0-4a<0}\end{array}\right.$,解得a,即可判断出结论.

解答 解:命题p:$\frac{1}{a}$>$\frac{1}{4}$,解得0<a<4.
命题q:?x∈R,ax2+1>0,则a=0,或$\left\{\begin{array}{l}{a>0}\\{△=0-4a<0}\end{array}\right.$,解得a≥0.
则p成立是q成立的充分不必要条件.
故选:A.

点评 本题考查了不等式的解法与性质、二次函数的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若直线(a-1)x-2y+1=0与直线x-ay+1=0平行,则a=(  )
A.-1或2B.-1C.2D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果直线l将圆x2+y2+2x-4y=0平分,且不过第一象限,那么l的斜率的取值范围是(  )
A.[0,2]B.(0,2)C.(-∞,0)∪(2,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知△ABC满足∠BAC=60°,BC=2,对于△ABC外接圆上一点D,满足∠BCD=45°,则BD=(  )
A.$\sqrt{6}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x2-2x+2a-a2≤0},B={x|sin(πx-$\frac{π}{3}}$)+$\sqrt{3}$cos(πx-$\frac{π}{3}}$)=0}.
(1)若2∈A,求a的取值范围;
(2)若A∩B恰有3个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{12}$=1(a>2$\sqrt{3}$)的左焦点为F,左顶点为A,$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率,过点A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)已知点Q(-3,0),P为线段AD上一点且|AP|=λ|AD|,是否存在定值λ使得OP⊥EQ恒成立,若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(x,y)在椭圆x2+4y2=4上,则$\frac{3}{4}{x^2}+2x-{y^2}$的最大值为(  )
A.8B.7C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F为CD中点.
(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的正弦值;
(Ⅲ)求点A到平面CDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设命题p:实数x满足x2-6ax-16a2<0(a≠0);命题q:实数x满足$\frac{1}{8}$≤2x≤16,
(1)若a=1时,命题p∨q为真,同时命题p∧q为假,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案