精英家教网 > 高中数学 > 题目详情
15.若全集U=R,集合A={x|x2-x-2>0},则∁UA=(  )
A.(-1,2)B.(-2,1)C.[-1,2]D.[-2,1]

分析 求出集合A,利用补集的定义进行求解即可.

解答 解:A={x|x2-x-2>0}={x|x>2或x<-1},
则∁UA={x|-1≤x≤2},
故选:C

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2an+n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知求形如函数y=(f(x))g(x)的导数的方法如下:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导数得到:$\frac{1}{y}$•y′=g′(x)•lnf(x)+g(x)•$\frac{1}{f(x)}$•f′(x),于是得到y′=(f(x))g(x)•(g′(x)•lnf(x)+g(x)•$\frac{1}{f(x)}•$f′(x)).运用此方法求得函数y=x${\;}^{\frac{1}{x}}$(x>0)的极值情况是(  )
A.极大值点为(e,e${\;}^{\frac{1}{e}}$)B.极小值点为(e,e${\;}^{\frac{1}{e}}$)
C.极大值点为eD.极小值点为e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|y=lg(3-2x)},集合B={y|y=$\sqrt{1-x}$},则A∩B=(  )
A.[0,$\frac{3}{2}$)B.(-∞,1]C.(-∞,$\frac{3}{2}$]D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A、B、C的对边分别为a,b,c,若a=2,c=$\sqrt{2}$,cosA=-$\frac{{\sqrt{2}}}{4}$,则b的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(2x+φ)的图象经过点E($\frac{π}{4}$,$\sqrt{3}$),F($\frac{π}{3}$,1),其中A≠0,φ∈(0,$\frac{π}{2}$).
(Ⅰ)求φ的值,并求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{2}{3}$,求sin($\frac{7π}{6}$-4θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆的一个顶点A(0,-1),焦点在x轴上,且右焦点到直线x-y+2$\sqrt{2}$=0的距离为3.
(1)求椭圆的方程;
(2)椭圆上任一点P到左焦点的距离的最小与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,有a=2b,且C=30°,则这个三角形一定是钝角三角形.三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下面四个命题:
①已知函数$f(x)=\left\{\begin{array}{l}\sqrt{x}\;,x≥0\;\\ \sqrt{-x}\;,x<0\;\end{array}\right.$且f(a)+f(4)=4,那么a=-4;
②要得到函数$y=sin({2x+\frac{π}{3}})$的图象,只要将y=sin2x的图象向左平移$\frac{π}{3}$单位;
③若定义在(-∞,+∞)上的函数f(x)满足f(x+1)=-f(x),则f(x)是周期函数;
④已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0解集{x|x<-1}.
其中正确的是③.

查看答案和解析>>

同步练习册答案