精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CEACEFACAB=

(1)求证:CF⊥平面BDE

(2)求二面角A-BE-D的大小。

【答案】(1)见证明;(2) (或

【解析】

1)连接FG,可证得四边形CEFG为菱形,故得.再根据平面ABCD平面ACEF得到平面ACEF,从而.由线面垂直的判定定理可得结论成立.(2)建立空间直角坐标系,求出平面BDE和平面ABE的法向量,求出两向量的夹角的余弦值并结合图形可得所求角的大小.

(1)连接FG,

∴四边形CEFG为菱形,

.

∵ABCD为正方形,

又平面ABCD平面ACEF,平面ABCD平面ACEF=AC,BD平面ABCD

平面ACEF,

∵CF平面ACEF,

,BD平面BDE, BG平面BDE,

平面BDE.

(1)∵正方形ABCD和四边形ACEF所在的平面互相垂直,且CE⊥AC,

∴CE⊥平面ABCD,

以C为原点,CB为轴,CD为轴,CE为轴,建立如图所示的空间直角坐标系

由(1)可得是平面BDE的一个法向量.

设平面ABE的一个法向量为

,得

,得

由图形可得二面角A-BE-D为锐角,

∴二面角A-BE-D的大小为(或).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面α及直线ab,则下列说法正确的是(  )

A. 若直线ab与平面α所成角都是30°,则这两条直线平行

B. 若直线ab与平面α所成角都是30°,则这两条直线不可能垂直

C. 若直线ab平行,则这两条直线中至少有一条与平面α平行

D. 若直线ab垂直,则这两条直线与平面α不可能都垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量,令函数,若函数的部分图象如图所示,且点的坐标为.

(1)求点的坐标;

(2)求函数的单调增区间及对称轴方程;

(3)若把方程的正实根从小到大依次排列为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若关于的方程只有一个实数解,求实数的取值范围;

(2)若当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的偶函数,当时,

1)求的函数解析式;

2)作出的草图,并求出当函数个不同零点时,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为,射线与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于AB两点(异于M).

(1)求证:直线AB的斜率为定值;

(2)求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形,现将沿折起,当二面角的大小在时,直线所成角为,则的最大值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高一学生暑假里在家读书情况,特随机调查了50名男生和50名女生平均每天的阅读时间(单位:分钟),统计如下表:

(1)根据统计表判断男生和女生谁的平均读书时间更长?并说明理由;

(2)求100名学生每天读书时间的平均数,并将每天平均时间超过和不超过平均数的人数填入下列的列联表:

(3)根据(2)中列联表,能否有99%的把握认为“平均阅读时间超过或不超过平均数是否与性别有关?”

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

【答案】(1);.

(2).

【解析】试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.

试题解析】

(Ⅰ)圆的参数方程为为参数).

直线的直角坐标方程为.

(Ⅱ)由直线的方程可得点,点.

设点,则 .

.

由(Ⅰ)知,则 .

因为,所以.

型】解答
束】
23

【题目】选修4-5:不等式选讲

已知函数 .

(Ⅰ)若对于任意 都满足,求的值;

(Ⅱ)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案