精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知:函数y=f (x)的定义域为R,且对于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且当x>0时,f (x)<0恒成立.

证明:(1)函数y=f (x)是R上的减函数.

(2)函数y=f (x)是奇函数.

 

【答案】

(1)见解析;(2)见解析。

【解析】

试题分析:(1)设x1>x2,则x1-x2>0,而f (a+b)=f (a)+f (b),

所以f (x1)=f (x1-x2+x2)=f (x1-x2)+f (x2)<f (x2),

即f (x1)<f (x2),所以函数在R上是减函数.                   ……6分

(2)由f (a+b)=f (a)+f (b)得:f (x-x)=f (x)+f (-x),即f (x)+f (-x)=f (0),而f (0)=0,

所以f (-x)=-f (x),即函数f (x)是奇函数.                    ……12分

考点:本题考查抽象函数及其应用;函数奇偶性的判断.函数的单调性。

点评:本题以抽象函数的单调性证明为载体考查了函数的奇偶性的定义,其中利用“凑配法”得到f(0)=0及f(-x)=-f(x)是解答的关键.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案