精英家教网 > 高中数学 > 题目详情
已知圆C的方程是x2+y2-8x-2y+10=0,过点M(3,0)的最短弦所在的直线方程是(  )
A、x+y-3=0
B、x-y-3=0
C、2x-y-6=0
D、2x+y-6=0
考点:直线与圆的位置关系
专题:直线与圆
分析:由题意可得点M(3,0)在圆的内部,故当直线和CM垂直时,弦长最短,求出最短的弦所在直线的斜率,用点斜式求得过点M(3,0)的最短弦所在的直线方程.
解答: 解:圆x2+y2-8x-2y+10=0,即 (x-4)2+(y-1)2 =7,表示以C(4,1)为圆心,半径等于
7
的圆,显然点M(3,0)在圆的内部,
故当直线和CM垂直时,弦长最短,
故最短的弦所在直线的斜率为
-1
KCM
=
-1
1-0
4-3
=-1,故过点M(3,0)的最短弦所在的直线方程是y-0=-(x-3),即x+y-3=0,
故选:A.
点评:本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,用点斜式求直线的方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足2f(x)-f(-x)=x+1,则f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥DM如图1所示,其三视图如图2所示,其中正视图和侧视图都是直角三角形,俯视图是矩形.

(1)若E是PD的中点,求证:AE⊥平面PCD;
(2)求此四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若O为△ABC所在平面内一点,且满足(
OC
-
OB
)•(
OB
+
OC
-2
OA
)=0,则△ABC的形状为(  )
A、正三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B两点分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左顶点和上顶点,F是椭圆的右焦点,若
AB
BF
>0,则椭圆的离心率的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
1
ax-1
+
1
2
(a>1).
(1)探究函数f(x)在(0,+∞)上的单调性,并用定义加以证明;
(2)当a=2时,求函数f(x)在[-2,-1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)沪杭高速公路全长166千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于60千米/时且不高于120千米/时的时速匀速行驶到杭州,已知该汽车每小时的运输成本y(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.02;固定部分为220元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本约为多少元?(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2 (x2+2x+a),g(x)=(
1
2
 -x2
(1)当a=2时,若f(x)>g(x),求x的取值范围;
(2)若f(x)>1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且asinB=
3
bcosA.
(1)求A的大小;
(2)若a=3,sinC=2sinB,求b,c的值.

查看答案和解析>>

同步练习册答案