(本小题满分14分)
已知直角梯形中(如图1),,为的中点,
将沿折起,使面面(如图2),点在线段上,.
(1)求异面直线与所成角的余弦值;
(2)求二面角的余弦值;
(3)在四棱锥的棱上是否存在一点,使得平面,若存在,求出点的位置,若不存在,请说明理由.
(1) 略
(2)
(3) 存在的中点,使得平面.
【解析】
解:(1)依题意知:.
又面面,面面,面,
所以面. …………2分
又因为.
以为原点,建立如图所示的坐标系, …………3分
则. …………4分
由于,
所以,
即. …………5分
所以,.
所以. …………6分
(2)易知为平面的法向量. …………7分
设平面的法向量为,
则即,…………8分
令 则,即. …………9分
二面角的平面角为,则.…………10分
(3)方法一:存在的中点,使得:平面,证明如下:
连接,交于,取中点,连.
在△中,分别为中点,则. …………11分
在△中,分别为中点,则. …………12分
所以平面平面.
又平面,
所以平面. …………14分
方法二:假设在四棱锥的棱上存在一点,使得平面,不妨设:, …………11分
由,得. …………12分
由(2)知平面的法向量,由得. ……13分
故存在的中点,使得平面. …………14分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com