精英家教网 > 高中数学 > 题目详情
10.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)的渐近线和圆x2+y2-6y+8=0相切,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.2C.3D.$\sqrt{3}$

分析 根据双曲线方程得到它的渐近线方程为bx±ay=0,因为渐近线与圆x2+(y-3)2=1相切,故圆心到直线的距离等于半径,用点到直线的距离公式列式,化简得c=3a,可得该双曲线离心率.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)的渐近线方程为y=±$\frac{b}{a}$x,即bx±ay=0
又∵渐近线与圆x2+(y-3)2=1相切,
∴点(0,3)到直线bx±ay=0的距离等于半径1,
即$\frac{3a}{\sqrt{{b}^{2}+{a}^{2}}}$=1,解之得c=3a,可得双曲线离心率为e=$\frac{c}{a}$=3,
故选:C.

点评 本题给出双曲线的渐近线与已知圆相切,求双曲线的离心率,着重考查了直线与圆的位置关系和双曲线的基本概念等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求值:
(1)sinα-cosα;
(2)sin3(3π-α)+cos3(2π-α).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$a={4^{0.9}},b={8^{0.48}},c={(\frac{1}{2})^{1.5}}$,则a,b,c的大小关系是a>b>c(用“>”连接).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=m$\overrightarrow{i}$+5$\overrightarrow{j}$-$\overrightarrow{k}$,$\overrightarrow{b}$=3$\overrightarrow{i}$+$\overrightarrow{j}$+r$\overrightarrow{k}$若$\overrightarrow{a}$∥$\overrightarrow{b}$则实数m=15,r=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数${f_n}(x)={({\frac{n+3}{n}})^2}+\frac{n}{n+3}(x+1)(n∈{N^*})$,当n=1,2,3,…时,fn(x)的零点依次记作x1,x2,x3,…,则$\lim_{n→∞}{x_n}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.经过双曲线上任一点M作平行于实轴的直线,与渐近线交于P、Q两点,则|MP|•|MQ|为定值,其值为(  )
A.a2B.b2C.c2D.ab

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题P:函数f(x)=lg(x2-ax+1)的定义域为R;命题q:?m∈[-2,3],使不等式a2-5a+5≥$\sqrt{{m}^{2}+1}$成立.
(1)若命题p是真命题,求实数a的取值范围.
(2)若命题¬q是真命题,求实数a的取值范围.
(3)如果命题“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+2cos2$\frac{x}{2}$.
(I)求f(x)的最小正周期和单调递减区间;
(II)若f(B)=3,在△ABC中,角 A,B,C的对边分别是a,b,c,若b=3,sinC=2sin A,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在区间(0,+∞)上不是增函数的是(  )
A.y=3x-2B.y=3x2-1C.y=2x2+3xD.y=$\frac{2}{x}$-1

查看答案和解析>>

同步练习册答案