精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x|x|+2x-1,则不等式f(2x-2)>-1的解集是______.
(1)当2x-2≥0,即x≥1时,
f(2x-2)=(2x-2)|2x-2|+2(2x-2)-1
=(2x-2)2+2(2x-2)-1
=4x2-4x-1,
令4x2-4x-1>-1可解得x<0,或x>1,
结合x≥1可得x>1;
(2)当2x-2<0,即x<1时,
f(2x-2)=(2x-2)|2x-2|+2(2x-2)-1
=-(2x-2)2+2(2x-2)-1
=-4x2+12x-9,
令-4x2+12x-9>-1可解得1<x<2,
结合x<1可得x∈φ;
综合(1)(2)可得x>1,
故答案为:(1,+∞)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义在R上的偶函数f(x)满足:f(0)=5,x>0时,f(x)=x+
4
x

(1)求x<0时,f(x)的解析式;
(2)求证:函数f(x)在区间(0,2)上递减,(2,+∞)上递增;
(3)当x∈[-1,t]时,函数f(x)的取值范围是[5,+∞),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b≠0时,都有
f(a)+f(b)
a+b
>0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x-
1
2
)<f(x-
1
4
);
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q=∅,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=|1-
1
x
丨(x>0)
(1)当0<a<b且f(a)=f(b)时,①求
1
a
+
1
b
的值;②求
1
a2
+
1
b2
的取值范围;
(2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
a
x

(1)当a=1时,求函数f(x)的值域;
(2)当a>0时,判断函数f(x)的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=ax+b的图象如图所示,则函数h(x)=(ab)x在R上(  )
A.为增函数B.为减函数
C.为常数函数D.单调性不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,符合描述“偶函数且在区间x∈(0,+∞)单调递减”的是(  )
A.y=(
x
)2
B.y=
3x3
C.y=
x2
D.y=
3
x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,与函数f(x)=2x-1-
1
2x+1
的奇偶性、单调性均相同的是(  )
A.y=exB.y=ln(x+
x2+1
)
C.y=x2D.y=tanx

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=
x+1,(x≤1)
-x+3,(x>1)
,那么f[f(
5
2
)]
的值是(  )
A.
3
2
B.
5
2
C.
9
2
D.-
1
2

查看答案和解析>>

同步练习册答案