精英家教网 > 高中数学 > 题目详情
20.已知数列{an}满足a2=34,an+1-an=4n(n∈N*),则数列{$\frac{{a}_{n}}{n}$}的最小值是(  )
A.15B.14C.$\frac{27}{2}$D.16

分析 an+1-an=4n(n∈N*),可得an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n2-2n+30.因此$\frac{{a}_{n}}{n}$=$2n+\frac{30}{n}$-2,再利用单调性即可得出.

解答 解:∵an+1-an=4n(n∈N*),
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=4(n-1)+4(n-2)+…+4×2+34
=$4×\frac{n(n-1)}{2}$+30
=2n2-2n+30.
∴$\frac{{a}_{n}}{n}$=$2n+\frac{30}{n}$-2,
当n=4时,$\frac{{a}_{4}}{4}$=$\frac{27}{2}$,
当n=3时,$\frac{{a}_{3}}{3}$=14.
因此当n=4时,数列{$\frac{{a}_{n}}{n}$}取得最小值是$\frac{27}{2}$.
故选:C.

点评 本题考查了递推关系的应用、数列的单调性、“累加求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设A⊆Z,A≠∅,从A到Z的两个函数分别为f(x)=x2+1,g(x)=3x+5.若?x∈A,都有 f(x)=g(x),则满足条件的集合A的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,实数m的最大值为k
(1)求实数k;
(2)若a,b,c∈R+,且$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=\frac{k}{20}$,求z=a+2b+3c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)的定义域为(0,+∞),并且满足三个条件:①对任意的x,y∈R+,都有f(x+y)=f(x)f(y);②对任意的x∈R+,都有0<f(x)<1;③f(2)=$\frac{1}{4}$.
(Ⅰ)求f(1),f(3)的值;
(Ⅱ)证明:函数f(x)为区间(0,+∞)上的减函数;
(Ⅲ)解不等式:f(2x)<$\frac{1}{32}$f(-x2+6x-8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\left\{\begin{array}{l}{{4}^{x}(x≤\frac{1}{2})}\\{lo{g}_{a}x(x>\frac{1}{2})}\end{array}\right.$的最大值是2,则a的取值范围是0<a<$\frac{\sqrt{2}}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对任意非零实数a,b,定义a?b的算法原理如程序框图所示.设a为函数y=x2-2x+3(x∈R)的最小值,b为抛物线y2=8x的焦点到准线的距离,则计算机执行该运算后输出结果是(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{7}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列推理错误的是(  )
A.A∈l,A∈α,B∈l,B∈α⇒l?αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l?α,A∈l⇒A∉αD.A∈l,l?α⇒A∈α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知田径队有男运动员36人,女运动员24人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为20的样本,则抽取男运动员的人数为(  )
A.9B.12C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点O;
(2)求出△ABC与△A′B′C′的位似比;
(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于3:2.

查看答案和解析>>

同步练习册答案