精英家教网 > 高中数学 > 题目详情
6.定义在[-2,2]上的奇函数f(x)在区间[-2,0]上单调递减,则不等式f(1-x)+f(-x)<0的解集为[-1,$\frac{1}{2}$).

分析 根据条件便可得到f(0)=0,f(x)在(0,2]上单调递减,从而可以得出x>0时,f(x)<0,而x<0时,f(x)>0,并且由原不等式得到f(1-x)<f(x).这样可将x分成:-2≤x≤0,0<x<1,和1≤x≤2这几种情况,然后根据f(1-x),f(x)的符号,和f(x)的单调性便可求得每种情况下原不等式的解,求并集便可得出原不等式的解集.

解答 解:根据f(x)在[-2,2]上为奇函数,在[-2,0]上单调递减;
∴f(x)在[-2,2]上单调递减;
∴由f(1-x)+f(-x)<0得,f(1-x)<f(x);
∴$\left\{\begin{array}{l}{-2≤1-x≤2}\\{-2≤x≤2}\\{1-x>x}\end{array}\right.$;
解得$-1≤x<\frac{1}{2}$;
∴原不等式的解集为$[-1,\frac{1}{2})$.
故答案为:[-1,$\frac{1}{2}$).

点评 考查奇函数的定义,奇函数f(x)在原点有定义时,f(0)=0,奇函数在对称区间上的单调性,以及减函数定义的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}中,公差d>0,且满足:a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)若数列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n项和为Sn,令f(n)=$\frac{S_n}{n+16}$(n∈N*),求f(n)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log2x-1的定义域为[1,16],函数g(x)=[f(x)]2+af(x2)+2
(1)求函数y=g(x)的定义域;
(2)求函数y=g(x)的最小值;
(3)若函数y=g(x)的图象恒在x轴的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|$\overrightarrow a$|=$\sqrt{3}$,|$\overrightarrow b$|=2.
(1)若$\overrightarrow a$与$\overrightarrow b$的夹角为150°,求|$\overrightarrow a$+2$\overrightarrow b$|;
(2)若$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow a$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若偶函数f(x)在(-∞,0)上是减函数,则满足f(1)≤f(a)的实数a的取值范围是(  )
A.[1,+∞)B.(-∞,-1]C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆C:x2+y2-8x-8y+30=0,过曲线y=$\frac{1}{x}(x>0)$上的点P作圆C的切线,设点A为一个切点,则|PA|的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a=log2x,b=$\frac{2}{x}$,则“a>b”是“x>1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若函数y=f(x)-x-$\frac{a}{2}$恰有两个不同的零点,则实数a的取值范围是(  )
A.(0,2)B.(-∞,2)C.(-∞,2]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作截面PBC1平行的截面,则该截面的面积为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{6}$D.4

查看答案和解析>>

同步练习册答案