【题目】某青年教师有一专项课题是进行“学生数学成绩与物理成绩的关系”的研究,他调查了某中学高二年级800名学生上学期期末考试的数学和物理成绩,把成绩按优秀和不优秀分类得到的结果是:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有60人. 附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 6.635 | 7.879 | 10.828 |
K2= .
(1)能否在犯错概率不超过0.001的前提下认为该中学学生的数学成绩与物理成绩有关?
(2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取4名学生的成绩,记抽取的4份成绩中数学、物理两科成绩恰有一科优秀的份数为X,求X的分布列和期望E(X).
【答案】
(1)解:列出的2×2列联表为:
数学成绩 | 物理成绩 | 合计 | |
优秀 | 200 | 120 | 320 |
不优秀 | 600 | 680 | 1280 |
合计 | 800 | 800 | 1600 |
∴ ;
故能在犯错概率不超过0.001的前提下认为该中学学生的数学成绩与物理成绩有关系.
(2)解:随机抽取1名学生的成绩,数学、物理两科成绩恰有一科优秀的概率为
∵X~B(4, ),∴X的分布列为
X | 0 | 1 | 2 | 3 | 4 |
p |
…(10分)
∴
【解析】(1)利用公式计算出K2 , 进而得出结论.(2)随机抽取1名学生的成绩,数学、物理两科成绩恰有一科优秀的概率为 ,利用由X~B(4, ),即可得出X的分布列及其数学期望.
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,﹣4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的三内角A、B、C成等差数列,sinA、sinB、sinC成等比数列,则这个三角形的形状是( )
A.直角三角形
B.钝角三角形
C.等腰直角三角形
D.等边三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种放射性元素的原子数N随时间t的变化规律是N=N0e﹣λt , 其中e=2.71828…为自然对数的底数,N0 , λ是正的常数
(Ⅰ)当N0=e3 , λ= , t=4时,求lnN的值
(Ⅱ)把t表示原子数N的函数;并求当N= , λ=时,t的值(结果保留整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C1: =1(a>b>0)的左、右焦点分别为F1 , F2 , 点M在双曲线C1的一条渐近线上,且OM⊥MF2 , 若△OMF2的面积为16,且双曲线C1与双曲线C2: =1的离心率相同,则双曲线C1的实轴长为( )
A.32
B.16
C.8
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 =1(a>0,b>0)的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为﹣ ,求双曲线的离心率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com