精英家教网 > 高中数学 > 题目详情
13、已知函数y=f(x)是定义在R上的奇函数且对任意x∈R,f(x+2)=-f(x)成立,则f(8)的值为
0
分析:由函数f(x)是定义在R上的奇函数,且对任意x∈R有f(x+2)=-f(x)成立,我们不难得到函数f(x)是一个周期函数,而且我们可以求出它的最小正周期T,根据周期函数的性质,我们易求出f(8)的值.
解答:解:∵对任意x∈R有f(x+2)=-f(x)成立
f(x+4)=-f(x+2)=f(x),
所以f(x)是周期为4的周期函数,
故f(8)=f(0)
又∵定义在R上的奇函数其图象必过原点
∴f(8)=0
故答案为:0
点评:本题考查函数的奇偶性,周期性,以及它们的综合应用,求的值很容易联想利用函数的周期性来解答.关键是得出最小正周期.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案