精英家教网 > 高中数学 > 题目详情

【题目】1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且△的周长为6,求椭圆的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为盾圆

2)如图,已知盾圆的方程为,设盾圆上的任意一点的距离为到直线的距离为,求证:为定值;

3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为盾圆,设过点的直线与盾圆交于两点,,且),试用表示,并求的取值范围.

【答案】1;(2)证明见解析;(3.

【解析】

1)由由的周长为,由椭圆与双曲线共焦点可得,根据平方关系求得,进而即可得到椭圆方程;

2)设“盾圆”上的任意一点的坐标为,,分为两种情况表示出,再分别计算,即可求得定值;

3)由“盾圆”的对称性,不妨设轴上方(或轴上),分类讨论:,在椭圆弧上;,在抛物弧,由条件可表示出此时,相应地, 再按, 在抛物弧,在椭圆弧上;当,在椭圆弧, 在抛物弧上;当, 在椭圆弧,利用三角函数性质分别求出的范围

1)由的周长为,椭圆与双曲线有相同的焦点,所以,,,,则椭圆的方程为

2)证明:设“盾圆”上的任意一点的坐标为,

,,,

,,,

所以为定值.

3)显然“盾圆”由两部分合成,所以按在抛物弧或椭圆弧上加以分类,由“盾圆”的对称性,不妨设轴上方(或轴上);

,,此时,

,在椭圆弧,由题设知代入,,整理得,解得(舍去)

,在抛物弧,方程或定义均可得到,于是,

综上,

相应地,,

, 在抛物弧,在椭圆弧,

,在椭圆弧, 在抛物弧,

;

, 在椭圆弧,

综上,

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中

1)讨论在其定义域上的单调性;

2)当时,求取得最大值和最小值时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,内角A,B,C所对的边长分别是a,b,c.

(1)若,,且的面积为,求的值;

(2)若 ,试判断ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义运算:对于任意(等式的右边是通常的加减乘运算).若数列的前n项和为,且对任意都成立.

1)求的值,并推导出用表示的解析式;

2)若,令,证明数列是等差数列;

3)若,令,数列满足,求正实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,侧面底面是边长为2的正三角形底面是菱形,点的中点

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术·均输》中有如下问题:今有五人分十钱,令上二人所得与下三人等,问各得几何.其意思为已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?是古代的一种重量单位).这个问题中,甲所得为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在区间上且同时满足如下条件的函数所组成的集合:

①对任意的,都有

②存在常数,使得对任意的,都有

1)设,试判断是否属于集合

2)若,如果存在,使得,求证:满足条件的是唯一的;

3)设,且,试求参数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过多年的运作,双十一抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014双十一网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在双十一的销售量p万件与促销费用x万元满足(其中a为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为

元/件,假定厂家的生产能力完全能满足市场的销售需求.

(1)将该产品的利润y万元表示为促销费用x万元的函数;

(2)促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一,在直角梯形中,分别为的三等分点,, ,若沿着折叠使得点重合,如图二所示,连结.

1)求证:平面平面

2)求点到平面的距离.

查看答案和解析>>

同步练习册答案